idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/21/2019 16:15

Magnetische Mikroboote

Dr. Christian Schneider Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Polymerforschung

    Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

    Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der Hauptbestandteil von Rost, aber auch - in einer anderen kristallinen Form - von Flachmagneten, die an vielen Kühlschränken zu finden sind. Diese beiden Formen von Eisenoxid weisen unterschiedliche magnetische Eigenschaften und Reaktion auf das Vorhandensein eines Magnetfeldes auf, da sich die Ausrichtung der kleinen magnetischen Bereiche im Inneren ändert. Im Nanometerbereich - im Größenbereich von etwa 30 Millionstel Millimetern - kommt bei einer Größe, die der einer magnetischen Domäne entspricht, ein neuer Effekt ins Spiel: der Superparamagnetismus. Superparamagnetische Nanopartikel weisen nur in Gegenwart eines Magnetfeldes eine hohe Magnetisierung auf, sie behalten jedoch keine Magnetisierung, wenn das magnetische Feld abgeschaltet wird.

    Dieser reversible Effekt könnte in zukünftigen medizinischen Anwendungen genutzt werden, bei denen Medikamente nichtinvasiv im Blut zu einem bestimmten Ort geleitet werden müssen. Wenn sich jedoch mehrere dieser Nanopartikel zu größeren Strukturen - so genannten Clustern - verbinden, verlieren sie ihre superparamagnetischen Eigenschaften. Darüber hinaus ist es eine technische Herausforderung, mit einem solchen Material beliebige Strukturformen herzustellen.

    In Zusammenarbeit mit Wissenschaftlern aus der Gruppe von Dr. Héloïse Thérien-Aubin aus dem Arbeitskreis von Prof. Katharina Landfester, die auf die Herstellung von Nanopartikeln spezialisiert ist, und Wissenschaftlern aus dem Arbeitskreis von Prof. Hans-Jürgen Butt, die an wasserabweisenden Oberflächen arbeiten, wurde ein neues Verfahren zur Lösung dieser beiden Probleme entwickelt. Zunächst wurden superparamagnetische Nanopartikel aus Eisenoxid in eine Schutzhülle aus Polystyrol, einem nicht-magnetischen Kunststoff, eingekapselt, um ihren Superparamagnetismus auch bei der Bildung großer Aggregate zu erhalten. Die Schutzhülle fungiert in diesem Fall als Abstandshalter zwischen den Nanopartikeln.

    Nach der Herstellung dieser Nanopartikel setzen die Wissenschaftler Tröpfchen bestehend aus einer Suspension von superparamagnetischen Nanopartikeln in Wasser auf eine Oberfläche, auf der wie auf einem Lotusblatt Wasser abgewiesen wird. Dadurch bilden die Tropfen eine kugelförmige Form. Nach dem Verdampfen des Wassers erhielten die Wissenschaftler eine dreidimensionale Struktur, die nur aus Nanopartikeln besteht.

    Die Forscher konnten zeigen, dass sie die Größe und Form der resultierenden Struktur variieren können, wenn sie die Konzentration der Nanopartikel im Wasser verändern und einen externen Magneten verwenden, während sie das Wasser verdampfen. Die Veränderung der Konzentration der Nanopartikel führt zu unterschiedlichen Strukturgrößen von mehreren Mikrometern (Millionstel Meter) bis zu mehreren Millimetern. Eine Variation der Stärke des äußeren Magnetfeldes führt zu unterschiedlichen Formen, da die Nanopartikel mit dem Magneten und auch untereinander interagieren.

    Mit diesem Präparationsverfahren wurden nicht-kugelförmige Strukturen wie tonnenförmig, kegelartig oder zweitürmig erhalten. "Dies ist ein großer Schritt in Richtung Einsatz von superparamagnetischen Mikrostrukturen in modernen Anwendungen, da unsere Methode sehr vielseitig einsetzbar sowie zeit- und materialeffizient ist", sagt Héloïse Thérien-Aubin.

    Die wissenschaftlichen Ergebnisse wurden in der renommierten Zeitschrift "ACS Nano" der American Chemical Society veröffentlicht.

    Über Héloïse Thérien-Aubin
    Héloïse Thérien-Aubin studierte Chemie an der Université de Montréal in Kanada. Nach ihrer Promotion in der Gruppe von Prof. Julian Zhu schloss sie sich der Gruppe von Prof. Christopher K. Ober in der Abteilung für Materialwissenschaften und Ingenieurwesen an der Cornell University und dann der Gruppe von Prof. Eugenia Kumacheva an der University of Toronto an. Seit 2016 ist sie als Gruppenleiterin im Arbeitskreis von Prof. Katharina Landfester am MPI-P tätig. Ihre Forschungsinteressen reichen von der Konformation und Dynamik von Polymeren in engen Umgebungen bis hin zur Herstellung adressierbarer Nanokolloide.


    Contact for scientific information:

    Héloïse Thérien-Aubin
    Ackermannweg 10
    55128 Mainz
    Tel.: 06131 – 379 525
    Mail: therien@mpip-mainz.mpg.de


    Original publication:

    https://pubs.acs.org/doi/10.1021/acsnano.8b07783


    More information:

    http://www.mpip-mainz.mpg.de/~therien/


    Images

    Mit einem magnetischen Feld können Wissenschaftler des Max-Planck-Instituts für Polymerforschung die Struktur bestimmen, die von sogenannten "superparamagnetischen Nanopartikeln" gebildet wird.
    Mit einem magnetischen Feld können Wissenschaftler des Max-Planck-Instituts für Polymerforschung die ...
    MPI-P, Lizenz CC-BY-SA
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Chemistry, Materials sciences, Physics / astronomy
    transregional, national
    Scientific Publications
    German


     

    Mit einem magnetischen Feld können Wissenschaftler des Max-Planck-Instituts für Polymerforschung die Struktur bestimmen, die von sogenannten "superparamagnetischen Nanopartikeln" gebildet wird.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).