Forscherteam erzeugt membranlose Organellen in lebender Zelle für die Proteinsynthese / Einbau von synthetischen Aminosäuren ermöglicht komplett neue chemische Funktionalität
Einem Forscherteam um den biophysikalischen Chemiker Prof. Dr. Edward Lemke ist es gelungen, eine membranlose Organelle in einer lebenden Zelle zu erzeugen und damit selektiv Proteine herzustellen, in die synthetische Aminosäuren eingebaut sind. Über diese chemisch erzeugten Aminosäuren ist es möglich, die Zellen mit völlig neuen Funktionen auszustatten. Beispielsweise könnten fluoreszierende Bausteine eingebaut werden, die mit bildgebenden Verfahren einen Blick ins Innere der Zelle erlauben. Die Forschungsarbeit der Gruppe ist in Zusammenarbeit der Johannes Gutenberg-Universität Mainz (JGU) mit dem Institut für Molekulare Biologie (IMB) und dem European Molecular Biology Laboratory (EMBL) erfolgt und wurde im renommierten Wissenschaftsmagazin Science veröffentlicht.
Organellen sind Kompartimente in Zellen, die wie der Kern oder die Mitochondrien bestimmte Funktionen erfüllen. Die Gruppe um Lemke hat nun ein neues Kompartiment erzeugt, in dem spezielle Proteine synthetisiert werden können. „Bildlich gesprochen suchen wir uns eine Ecke in der Zelle aus, wo wir unser Haus bauen und holen dann einen Teil der Ribosomen, die in der Zelle vorhanden sind, herein“, beschreibt Edward Lemke das Vorgehen. An den Ribosomen erfolgt die Biosynthese von Proteinen. Über den genetischen Code wird dabei die Boten-RNA (mRNA) in die Abfolge der Aminosäuren für das neu zu bildende Protein übersetzt.
Beim Bau der Designer-Organelle hat sich das Team um Lemke vom Prinzip der Phasenseparation inspirieren lassen: Phasenseparation wird von der Zelle verwendet, um spezielle Proteine und RNA lokal zu konzentrieren und neue, membranlose Kompartimente zu bauen. „Unsere membranlose Organelle ist quasi ein offenes Reaktionszentrum“, so Lemke.
Damit kann die Proteinbiosynthese an einem genau definierten Ort ablaufen, was für die Arbeit mit künstlichen Aminosäuren wichtig ist. Denn die Technik, mithilfe einer nicht natürlichen Aminosäure ein neues Protein zu schaffen, ist bereits bekannt. Wenn dieser Einbau aber unspezifisch in der ganzen Zelle erfolgt, ist die Belastung groß und die Zelle wird unter Umständen stark beeinträchtigt. Mit ihrer Methode der sogenannten orthogonalen Translation vermeiden die Wissenschaftler dieses Problem.
Großer Fundus an natürlichen und synthetischen Aminosäuren für Proteinsynthese an Designer-Organellen
„Unsere Organelle kann Proteine erzeugen, indem sie synthetisch hergestellte nicht-kanonische Aminosäuren verwendet. Davon gibt es zurzeit über 300. Das heißt es gibt nun keine Beschränkungen mehr, nur die 20 kanonischen Aminosäuren zu nutzen“, erklärt Gemma Estrada Girona, zusammen mit Christopher Reinkemeier Erstautorin der Science-Veröffentlichung. Beim Menschen bestehen die Proteine aus 20 natürlich vorkommenden Aminosäuren, auch kanonische Aminosäuren genannt. Darüber hinaus gibt es nicht-kanonische Aminosäuren, die nicht in normalen menschlichen Proteinen vorkommen. Die Erweiterung des genetischen Codes ermöglicht es, dass auch nicht-kanonische Aminosäuren eingebaut werden. Die neue Designer-Organelle ist in der Lage, den genetischen Code selektiv zu erweitern. Dadurch wird innerhalb der Organelle die RNA anders übersetzt als im Rest der Zelle. „Wir haben uns die Natur zum Vorbild genommen, speziell den membranlosen Nukleolus, der im Zellkern an der Synthese von RNA beteiligt ist“, erklärt Lemke. „Wir waren dann aber doch überrascht, dass wir eine so komplizierte Struktur und Funktion tatsächlich mit wenigen Schritten selber bauen können.“
Das Konzept kann möglicherweise als Plattform für das Design weiterer Organellen dienen und einen Weg aufzeigen, um semisynthetische Zellen und semisynthetische Organismen zu schaffen. „Unser Werkzeug ist in der Lage, Translation in Zellen durchzuführen, potenziell aber auch andere Zellprozesse wie die Transkription. Dies könnte es uns ermöglichen, neue Typen von Organellen zu erzeugen, die das funktionelle Repertoire komplexer lebender Systeme erweitern“, erläutert Christopher Reinkemeier.
Die Designer-Organellen verbinden also Biologie und Chemie, um eine komplett neue chemische Funktionalität zu erreichen. Anwendungen ergeben sich außer bei der erwähnten Fluoreszenz-Methode für die Bildgebung etwa auch bei der Herstellung von Antikörpern für therapeutische Zwecke. Zunächst wollen Lemke und sein Team jedoch die Designer-Organellen weiter verkleinern, um jeden Einfluss auf die Physiologie eines gesunden Organismus zu minimieren.
Edward Lemke ist Visiting Group Leader am European Molecular Biology Laboratory, Professor für synthetische Biophysik an der Johannes Gutenberg-Universität Mainz und Adjunct Director am Institut für Molekulare Biologie. Er koordiniert auch das neue DFG-Schwerpunktprogramm „Molekulare Mechanismen funktioneller Phasenseparation".
Video:
https://youtu.be/dCb07aM9Itk
Die synthetische Organelle in Zellen: Das Video zeigt eine 3-D-Darstellung von Immunofluoreszenzbildern der synthetischen Organelle, die auf Phasenseparation und Motorproteinen basiert. Die Zellkerne von transfizierten Zellen sind in Grün dargestellt, Ribosomen in Cyan, Mikrotubuli in Gelb und die orthogonale tRNA-Synthetase in Magenta. Zu sehen ist, dass sowohl Ribosomen also auch Mikrotubuli in der Organelle zu finden sind.
©: Christopher Reinkemeier
Bildmaterial:
http://www.uni-mainz.de/bilder_presse/10_imp_biophysik_designer_organellen_01.jp...
Konstruktion einer Organelle in der lebenden Zelle für die Proteinbiosynthese
Abb./©: Gemma Estrada Girona
Weiterführende Links:
http://www.gfk.uni-mainz.de/2266.php – GFK-Fellow Prof. Dr. Edward A. Lemke
https://www.embl.de/research/units/scb/lemke/index.html – Lemke Group „High Resolution Studies of Protein Plasticity“ am European Molecular Biology Laboratory (EMBL)
https://www.imb.de/research/lemke/research/ – Synthetic Biophysics of Protein Disorder am Institute of Molecular Biology (IMB)
http://www.spp2191.com/ – Homepage des Schwerpunktprogramms „ Molecular Mechanisms of Functional Phase Separation“
Lesen Sie mehr:
http://www.magazin.uni-mainz.de/9105_DEU_HTML.php – JGU Magazin: „Flexible Proteine geben Rätsel auf” (15. Mai 2018)
http://www.uni-mainz.de/presse/aktuell/5059_DEU_HTML.php – Pressemitteilung „Neues DFG-Schwerpunktprogramm bringt Licht in das Dunkle Proteom“ (09.05.2018)
Prof. Dr. Edward Lemke
Synthetische Biophysik
Institut für Molekulare Physiologie und Institut für Molekulare Biologie (IMB)
Johannes Gutenberg-Universität Mainz
55099 Mainz
E-Mail: edlemke@uni-mainz.de
http://www.lemkelab.com
https://imp.biologie.uni-mainz.de/e-lembke/
C. D. Reinkemeier, G. E. Girona, E. A. Lemke, Designer membraneless organelles enable codon reassignment of selected mRNAs in eukaryotes, Science 363:6434, eaaw2644, 29. März 2019,
DOI: 10.1126/science.aaw2644
http://science.sciencemag.org/content/363/6434/eaaw2644
Konstruktion einer Organelle in der lebenden Zelle für die Proteinbiosynthese
Abb./©: Gemma Estrada Girona
None
Criteria of this press release:
Journalists, Scientists and scholars
Biology, Medicine, Physics / astronomy
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).