idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo

Share on: 
06/12/2019 16:10

Discovery of Field-Induced Pair Density Wave State in Cuprate High Temperature Superconductors

Dipl.-Übers. Ingrid Rothe Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Chemische Physik fester Stoffe

    Superconductors are quantum materials that are perfect transmitters of electricity and electronic information. Presently, cuprates are the best candidate for highest temperature superconductivity at ambient pressure, operating at approximately -120 ⁰C. Improving this involves understanding competing phases, one of which has now been identified.

    Superconductors are quantum materials that are perfect transmitters of electricity and electronic information. Although they form the technological basis of solid-state quantum computing, they are also its key limiting factor because conventional superconductors only work at temperatures
    near -270 ⁰C. This has motivated a worldwide race to try to discover higher temperature superconductors. Materials containing CuO₂ crystal layers (cuprates) are, at present, the best candidate for highest temperature superconductivity, operating at approximately -120 ⁰C. But room temperature superconductivity in these compounds appears to be frustrated by the existence of a competing electronic phase, and focus has recently been on identifying and controlling that mysterious second phase.

    Superconductivity occurs when electrons form pairs of opposite spin and opposite momentum, and these “Cooper pairs” condense into a homogeneous electronic fluid. However, theory also allows the possibility that these electron pairs crystallize into a “pair density wave” (PDW) state where the density of pairs modulates periodically in space. Intense theoretical interest has emerged in whether such a PDW is the competing phase in cuprates.

    To search for evidence of such a PDW state, a team led by Prof. JC Séamus Davis (University of Oxford) and Prof. Andrew P. Mackenzie (Max Planck Institute CPfS, Dresden) with key collaborators Dr. Stephen D. Edkins and Dr. Mohammad Hamidian (Cornell University) and Dr. Kazuhiro Fujita (Brookhaven National Lab.), used high magnetic fields to suppress the homogeneous superconductivity in the cuprate superconductor Bi₂Sr₂CaCu₂O₈. They then carried out atomic-scale visualization of the electronic structure of the new field-induced phase. Under these circumstances, modulations in the density of electronic states containing multiple signatures of a PDW state were discovered. The phenomena are in detailed agreement with theoretical predictions for a field-induced PDW state, implying that it is a pair density wave which competes with superconductivity in cuprates. This discovery makes it clear that in order to understand the mechanism behind the enigmatic high temperature superconductivity of the cuprates, this exotic PDW state needs to be taken into account, and therefore opens a new frontier in cuprate research.

    Original publication:

    DOI: 10.1126/science.aat1773
    S. D. Edkins, A. Kostin, K. Fujita, A. P. Mackenzie, H. Eisaki, S. Uchida, Subir Sachdev, M. J. Lawler, E.-A. Kim, J. C. Séamus Davis, M. H. Hamidian
    "Magnetic field–induced pair density wave state in the cuprate vortex halo"
    Science 364, 976 (2019)

    More information:

    Criteria of this press release:
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications


    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.


    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).


    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).

    Cookies optimize the use of our services. By surfing on you agree to the use of cookies. Data Confidentiality Statement