idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Share on: 
06/26/2019 19:00

Eine Brücke zur Quantenwelt

Dr. Elisabeth Guggenberger Communications and Events
Institute of Science and Technology Austria

    WissenschafterInnen am IST Austria entwickeln Prototypen einer Schnittstelle, die in Zukunft Quantencomputer miteinander verbinden könnte

    Verschränkung ist eines der Grundprinzipien in der Quantenmechanik. PhysikerInnen der Arbeitsgruppe von Professor Johannes Fink am Institute of Science and Technology Austria (IST Austria) ist es nun gelungen, mit einem mechanischen Oszillator verschränkte Strahlung zu erzeugen. Ihre Methode, die sie in der aktuellen Ausgabe von Nature veröffentlichen, könnte sich als äußerst nützlich erweisen, um Quantencomputer miteinander zu verbinden.

    Verschränkung ist ein typisches Phänomen der Quantenwelt, kommt jedoch in der sogenannten „klassischen“ Welt, die wir aus unserem täglichen Leben gewohnt sind, nicht vor. Sind zwei Teilchen verschränkt, kann man die Eigenschaften des einen durch Beobachten des anderen ermitteln. Das Phänomen, das bereits von Einstein entdeckt wurde, wird derzeit in der Quantenkryptographie verwendet, um Verschlüsselung sicherer zu machen und lässt sich nicht nur auf Teilchen, sondern auch auf Mikrowellenstrahlung anwenden. An dieser Strahlung arbeitet Shabir Barzanjeh, ein Postdoc in der Gruppe von Professor Fink am IST Austria und Erstautor der nun publizierten Studie.

    „Stellen Sie sich eine Box mit zwei Ausgängen vor. Sind die Ausgänge verschränkt, kann man die Strahlung, die aus dem einem austritt, durch Beobachten des anderen charakterisieren“, erklärt er. Verschränkte Strahlung konnte bereits zuvor erzeugt werden, aber in dieser Studie verwendeten die ForscherInnen zum ersten Mal ein mechanisches Objekt. Mit einer Länge von 30 Mikrometern und einer Gesamtzahl von etwa einer Billion (1012) Atomen mag der von der Gruppe erzeugte Siliziumbalken in unseren Augen klein erscheinen, für die Quantenwelt ist er jedoch riesig. „Für mich war dieses Experiment auf einer sehr grundlegenden Ebene interessant“, sagt Barzanjeh. „Die Frage, die wir uns gestellt haben, war: Kann man mit einem so großen System verschränkte Strahlung erzeugen? Jetzt wissen wir, die Antwort lautet: Ja.“

    Das Gerät hat aber auch praktischen Wert. Mechanische Oszillatoren könnten als Schnittstelle zwischen den äußerst empfindlichen, kalten Quantencomputern und den Signalen in optischen Fasern dienen, die diese innerhalb und außerhalb von Rechenzentren verbinden sollen. „Was wir gebaut haben, ist ein Prototyp für eine Quantenschnittstelle", sagt Barzanjeh.

    In supraleitenden Quantencomputern funktioniert die Elektronik nur bei extrem niedrigen Temperaturen von wenigen tausendstel Grad über dem absoluten Nullpunkt von -273.15 °C, denn Quantencomputer arbeiten auf der Basis von Mikrowellenphotonen, die extrem empfindlich gegenüber Rauschen und Verlusten sind. Steigt die Temperatur im Computer, werden alle Informationen zerstört. Daher ist es derzeit fast unmöglich, Informationen von einem Quantencomputer auf einen anderen zu übertragen, denn die Information müsste eine heiße Umgebung durchqueren, die sie nicht „überlebt“.

    Klassische Computer in Netzwerken werden dagegen meist über optische Glasfaserleitungen verbunden, da optische Strahlung sehr robust gegen Störungen ist. Um diese erfolgreiche Technologie auch für Quantencomputer nutzen zu können, müsste eine Verbindung geschaffen werden, die die Mikrowellenphotonen des Quantencomputers in optische Informationsträger umwandeln kann ̶ oder ein Gerät, das verschränkte Mikrowellen und optische Felder als Grundlage für eine Quantenteleportation erzeugt. Eine solche Verbindung würde als Brücke zwischen dem optischen System auf Raumtemperatur und der eiskalten Quantenwelt dienen. Das von den Physikern entwickelte Gerät ist ein Schritt in diese Richtung. „Der Oszillator, den wir gebaut haben, hat uns einem Quanten-Internet einen Schritt näher gebracht", freut sich der Erstautor Barzanjeh.

    Dies ist jedoch nicht die einzig mögliche Anwendung des Geräts. „Unser System könnte auch eingesetzt werden, um die Leistung von Gravitationswellendetektoren zu verbessern", erklärt Shabir Barzanjeh. Johannes Fink fügt hinzu: „Es hat sich herausgestellt, dass die Beobachtung solcher stationär verschränkten Felder impliziert, dass der mechanische Oszillator, der sie erzeugt, ein Quantenobjekt sein muss. Dies gilt für jede Art von Mediator, wobei er dabei nicht direkt gemessen werden muss. Unser Messprinzip könnte daher in Zukunft dazu beitragen, die potenzielle Quantennatur anderer schwer untersuchbarer Systeme wie die lebender Organismen oder des Gravitationsfelds zu verifizieren beziehungsweise zu falsifizieren.“

    Über das IST Austria

    Das Institute of Science and Technology (IST Austria) in Klosterneuburg ist ein Forschungsinstitut mit eigenem Promotionsrecht. Das 2009 eröffnete Institut widmet sich der Grundlagenforschung in den Naturwissenschaften, Mathematik und Informatik. Das Institut beschäftigt ProfessorInnen nach einem Tenure-Track-Modell und Post-DoktorandInnen sowie PhD-StudentInnen in einer internationalen Graduate School. Neben dem Bekenntnis zum Prinzip der Grundlagenforschung, die rein durch wissenschaftliche Neugier getrieben wird, hält das Institut die Rechte an allen resultierenden Entdeckungen und fördert deren Verwertung. Der erste Präsident ist Thomas Henzinger, ein renommierter Computerwissenschafter und vormals Professor an der University of California in Berkeley, USA, sowie der EPFL in Lausanne. www.ist.ac.at


    Contact for scientific information:

    Shabir Barzanjeh
    shabirbarzanjeh@gmail.com


    Original publication:

    Stationary entangled radiation from micromechanical motion
    S. Barzanjeh, E. S. Redchenko, M. Peruzzo, M. Wulf, D. P. Lewis, G. Arnold & J. M. Fink
    https://doi.org/10.1038/s41586-019-1320-2


    More information:

    https://ist.ac.at/en/research/physical-sciences/fink-group/


    Criteria of this press release:
    Journalists, all interested persons
    Electrical engineering, Information technology, Mechanical engineering, Physics / astronomy
    transregional, national
    Research results
    German


    Illustration: Prototyp einer Schnittstelle, die in Zukunft Quantencomputer miteinander verbinden könnte.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).

    Cookies optimize the use of our services. By surfing on idw-online.de you agree to the use of cookies. Data Confidentiality Statement
    Okay