idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/26/2019 09:00

Earthquake impact on submarine slopes: subtle erosion versus significant strengthening

Lisa Marchl, MSc. Büro für Öffentlichkeitsarbeit
Universität Innsbruck

    Active margins, where an oceanic plate slides under a continental plate, may cause the largest earthquakes and tsunamis on earth. Besides their catastrophic impact on coastal communities, they are also known for shifting large amounts of sediments from the margin slopes into deep ocean trenches. Now a study led by geologists from the University of Innsbruck discovered for the very first time direct evidence of earthquake-triggered sediment erosion of surface sediments on a submarine slope close to the rupture area of the great 2011 Tohoku-oki earthquake.

    Whereas most previous research assumed that sediment transport by earthquakes only happened by sliding of sediment packages (i.e. submarine landslides), that are several meters thick, the recently-discovered process of surficial remobilization involves the stripping of only a thin veneer of sediment over an extensive area. At first view a few missing centimeters of sediment do not look very spectacular. However, the fact that it affects a vast area has tremendous implications for all studies based on the remobilization of marine sediment by earthquakes, such as research on pre-historical earthquakes, deposition of organic carbon into the deep ocean and even the potential tsunami hazard by submarine landslides. "Surficial remobilization was hypothesized based on studies of basin deposits. However, to really understand this important process it is crucial to investigate the place where it takes place: the submarine slopes", explains Jasper Moernaut, Assistant Professor at the Institute of Geology.

    Mind the gap

    The researchers combined chemical and physical analyses to detect small centimeter scale gaps in the sediment taken from a slope offshore Japan. Subsequent dating then revealed the potential of the gaps being caused by seismic shaking. "We were quite amazed when we found that not only one, but three gaps were present in this small 15 cm section of sediment core", says Ariana Molenaar, PhD student at the Institute of Geology. "When we dated these three gaps we found that they link to the three strongest regional earthquakes with a magnitude larger than eight, indicating that this is a systematically repeating process."
    No one before has examined deep sea slopes with this method. A slope site where erosion takes place is surely the last place one would take a sediment core. "Our pilot study is the first to target a submarine slope to investigate this process, showing the potential of this method", says Michael Strasser, Professor at the Institute of Geology. The research team is now applying their strategy in different settings – even in lakes − to further advance their understanding of this newly-discovered process.

    Contrasting effect on submarine slopes

    Besides the shedding of the uppermost few centimeters, earthquake shaking has another very contrasting effect on the submarine slope: the sediments that remain actually get stronger. This process, called "seismic strengthening", occurs due to the compaction of sediments by violent shaking. "In the ocean, this leads to very stable slope sequences and thus a remarkable absence of submarine landslides", says Jasper Moernaut. So the good news is that − despite the frequent occurrence of strong earthquakes at active ocean margins − tsunamis triggered by submarine landslides are relatively uncommon in these regions.


    Contact for scientific information:

    Ariana Willemina Molenaar, MSc
    Tel.: +43 512 507 54232
    Mail: Ariana.Molenaar@uibk.ac.at


    Original publication:

    https://dx.doi.org/10.1029/2019GL082350
    Earthquake Impact on Active Margins: Tracing Surficial Remobilization and Seismic Strengthening in a Slope Sedimentary Sequence. Ariana Molenaar, Jasper Moernaut, Gauvain Wiemer, Nathalie Dubois, Michael Strasser. DOI: 10.1029/2019GL082350


    Images

    Scientists and shipboard crew await the arrival of a new sediment core onboard research vessel RV Sonne in 2016.
    Scientists and shipboard crew await the arrival of a new sediment core onboard research vessel RV So ...
    T. Schwestermann
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Geosciences, Oceanology / climate
    transregional, national
    Research results, Scientific Publications
    English


     

    Scientists and shipboard crew await the arrival of a new sediment core onboard research vessel RV Sonne in 2016.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).