idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo

Share on: 
07/03/2019 15:25

Aircraft safety: Assessing the danger of drone strike: unique test bench to measure collision impact

Thomas Eck Kommunikation

    The rapid rise in the number of drones worldwide has been accompanied by increasing reports of near misses with commercial aircraft. In 2017, while co-ming in to land, a Canadian passenger aircraft actually collided with a drone, narrowly escaping catastrophe. Bird-strike tests for aircraft are mandatory. To date, however, there is no equivalent standard test procedure for collisions with drones. In order to to be able to fundamentally understand the conse-quences of a collision between an aircraft and a drone, the Fraunhofer Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI is now planning to build a test bench for recreating various collision scenarios with complete drones.

    The incidence of drones impacting air traffic has risen in recent years. In 2018, there were 158 cases reported at German airports. Indeed, Germany’s federal police has warned of a massive threat posed by unmanned aerial vehicles. This year, at the begin-ning of May, flight operations at Frankfurt Airport had to be shut down completely for a short period following the sighting of a drone. The total number of drones in private and commercial use in Germany is forecast to rise to 847,000 by 2030, an increase of almost 80 percent. Drones endanger not only aircraft coming into land but also low-flying heli-copters. Pilots live in fear of a drone hitting the cockpit windshield, the engine or the leading edge of the wings. Experts are of the opinion that a collision with a drone would cause more damage to the aircraft than the impact of a bird strike. Before being certi-fied for use, aircraft must undergo a standard test to assess their tolerance to bird strike. In the case of drones, however, there are no such regulations. Re-
    searchers from Fraunhofer EMI in Freiburg are keen to see changes here. “From a me-chanical point of view, drones behave differently to birds and also weigh considerably more,” explains Dr. Sebastian Schopferer, one of the scientists working on this project. “It is therefore uncertain, whether an aircraft that has been successfully tested against bird strike, would also survive a collision with a drone.”

    A major threat to safety

    Initial impact tests with drone batteries and motors have confirmed the danger. “Using compressed air, we accelerated these two components to speeds ranging from 115 to 255 meters per second and fired them at aluminum plates up to eight millimeters in thickness that were mounted in a test bench,” Schopferer explains. Given their weight, both the battery and the motor can cause major damage: “There was substantial de-formation and indentation of the plates, and the drone battery and engine were com-pletely destroyed.” The outcome of the tests was recorded with a high-speed video camera.

    The primary objective of this series of tests is to determine the transfer of momentum at the instant of impact with the two aforementioned components and to investigate the associated damage to aircraft materials such as aluminum alloys and fiber com-
    posites. In parallel to these dynamic investigations, researchers also conducted a number of quasi-static pressure tests in order to determine the strength and rigidity of the drone components. These results will play an essential role in the derivation of numerically efficient, predictive simulation models that the aviation industry can then use to ascer-tain new and important findings about the impact behavior of drones. Using such mod-els during the design phase, it will be possible to assess the resistance of new aircraft components to the impact of a drone.

    Acceleration tests with complete drones

    In order to simulate realistic impact scenarios, researchers are now planning to construct a new type of test bench for investigating the impact of complete drones with a maxi-mum weight of three kilograms and flying at speeds of up to 150 meters per second. “We will be able to investigate the impact and fragmentation of complete drones during collision with both rigid and flexible targets and thereby study the presumably cata-strophic effects of a drone strike for an aircraft,” Schopferer explains. “Tests in this weight class of drone have never been carried out before.” The tests will be conducted with a variety of drones, including both amateur and semiprofessional models, weighing between one and three kilograms. In addition to aircraft manufacturers, these investiga-tions will also benefit aviation authorities, providing them with important information for a more in-depth assessment of the danger to aircraft posed by drones.

    More information:

    Criteria of this press release:
    Information technology, Media and communication sciences
    transregional, national
    Research results

    No drones allowed in the vicinity of helicopters.

    For download



    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.


    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).


    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).

    Cookies optimize the use of our services. By surfing on you agree to the use of cookies. Data Confidentiality Statement