idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
08/09/2019 11:26

Forscherin der Saar-Uni findet bisher unbekannten Mechanismus bei der Schallverarbeitung im Innenohr

Thorsten Mohr Pressestelle der Universität des Saarlandes
Universität des Saarlandes

    Die Säugetiere verdanken ihren evolutionären Erfolg unter anderem auch ihrem exzellenten Hörvermögen. So haben sie im Laufe ihrer Entwicklung Frequenzbereiche für ihre Kommunikation erobert, die ihre Fressfeinde nicht hören konnten. Die Biologin Isabelle Lang hat nun einen Grund für dieses gute Hörvermögen entdeckt. In ihrer Doktorarbeit konnte sie die Existenz eines Proteins nachweisen, das für den Hörvorteil mitverantwortlich ist. Die Wissenschaftlerin konnte damit eine Frage beantworten, die Forschergruppen in aller Welt jahrelang Rätsel aufgegeben hatte. Ihre Erkenntnisse hat sie nun im Fachmagazin „The FASEB Journal” veröffentlicht.

    In der Bewertung vieler Menschen nimmt der Sehsinn den höchsten Stellenwert ein. Tatsächlich sind Menschen auch Sehspezialisten. Die Bedeutung des Gehörs wird darüber hinaus gern vergessen. Dabei spielt jedoch auch das Gehör eine wichtige Rolle für den Erfolg unserer Spezies – wie für den der Säugetiere im Allgemeinen. Denn das Hören dient nicht nur der Kommunikation bei Tier und Mensch, sondern ist auch für die räumliche Orientierung und die Erkennung von Gefahren wichtig.

    Tatsächlich kann der Mensch, wie Säugetiere im Allgemeinen, über einen größeren Frequenzbereich hören als andere Klassen des Tierreichs. Vögel etwa können Töne nur bis zu einer Frequenz von drei Kilohertz (kHz) wahrnehmen. Das menschliche Gehör deckt dagegen einen Bereich von 20 Hertz bis 20 kHz ab, viele kleinere Säugetiere hören weit in den Ultraschallbereich hinein, und Spezialisten wie Fledermäuse können sogar bis zu 200 kHz auflösen. Als sich während des Dinosaurier-Zeitalters die Säugetiere weiterentwickelten, spielte dieser Vorteil eine große Rolle. Die Säuger konnten dadurch in Frequenzbereichen miteinander kommunizieren, den ihre Fressfeinde, zum Beispiel die Dinosaurier, nicht hören konnten.

    Dies liegt unter anderem an der unterschiedlichen Reizverarbeitung im Innenohr. Säugetiere haben eine gewundene und relativ lange Gehörschnecke (Cochlea) im Innenohr, die ähnlich wie eine Gitarrensaite mechanisch abgestimmt ist. Hingegen besitzen Vögel ein simpler aufgebautes elektrisch abgestimmtes Pendant, in dem hochfrequente Töne nicht verarbeitet werden können.

    Die ankommende Schallwelle setzt eine komplexe physiologische Reaktion in Gang: Zuerst öffnen sich bestimmte Ionenkanäle an den „Härchen“ einer Hörsinneszelle, einer sogenannten Haarzelle, wodurch Kalium in die Zelle fließt und diese elektrisch erregt. Dadurch öffnen sich wiederum Calcium-Kanäle, die in einer weiteren Kette von Vorgängen elektrische Signale in Hörnervenzellen auslösen, die schließlich ins Gehirn weitergeleitet werden. Andere Kaliumkanäle, sogenannte BK-Kanäle, sorgen im Anschluss dafür, dass Kalium aus der Haarzelle ausströmt und die Zelle wieder in den Ausgangszustand versetzt wird. Damit sind die Hörsinneszellen wieder aufnahmefähig für eine neue Schallwelle.

    Schaut man nun genauer hin, ist es genau dieser BK-Kanal, der bei Säugern anders funktioniert als bei Vögeln. „Früher ist man davon ausgegangen, dass die BK-Kanäle bei Säugetieren abhängig von einströmendem Calcium sind“, erklärt Isabelle Lang. Denn bei Vögeln ist das genau so: Wird die Zelle nicht angeregt, fließt kein Calcium, also bleibt auch der BK-Kanal zu und es fließt kein Kalium. Durch das Wechselspiel beider Sorten Ionenkanäle, das in jeder Sinneszelle etwas anders abgestimmt ist, werden bei Vögeln (und auch bei Krokodilen, Eidechsen und anderen Reptilien) die Hörfrequenzen kodiert. Wurde aber bei experimentell angeregten Haarzellen von Säugetieren der Calciumeinstrom verhindert, floss trotzdem weiter Kalium durch die BK-Kanäle. Zudem sind die Calcium- und BK-Kanäle bei Säugetieren räumlich weit voneinander entfernt, wohingegen sie bei Vögeln in den Hörsinneszellen unmittelbar nebeneinander liegen. „Bei Säugern sind die Sinneszellen empfindlicher und schneller wieder ‚betriebsbereit‘, was dem großen Frequenzbereich des Hörens zugute kommt“, erläutert Jutta Engel, Professorin für Biophysik, den Zusammenhang.

    Bei Säugern wird der BK-Kanal daher unabhängig vom Calciumeinstrom aktiviert. Welcher Mechanismus dem zugrunde liegt, hat Wissenschaftlerinnen und Wissenschaftlern aus aller Welt in den vergangenen Jahren Rätsel aufgegeben. Isabelle Lang gelang es nun, dieses Rätsel zu lösen. In ihrer Doktorarbeit konnte sie nachweisen, dass ein Protein namens LRRC52 dafür verantwortlich ist, dass die BK-Kanäle im Säuger-Ohr anders funktionieren als im Innenohr von Vögeln. Es war aus Versuchen mit kultivierten Zellen bereits bekannt, dass LRRC-Proteine die Öffnung von künstlich eingebrachten BK-Kanälen vom Calciumspiegel entkoppeln.

    Isabelle Lang konnte zeigen, dass LRRC52 in hoher Konzentration in den Haarzellen erst vorhanden war, wenn ein Säugetier tatsächlich hörfähig ist. Dazu hat sie die Haarzellen von Mäusen vor und nach dem 12. Tag ihrer Geburt untersucht. Ab diesem Zeitpunkt sind die Nagetiere in der Lage zu hören. In den Haarzellen von Mäusen, die noch nicht hören konnten, war LRRC52 nicht nachweisbar. Das Protein war bei älteren Mäusen exakt dort zu finden, wo auch die BK-Kanäle saßen, und fehlte immer dann, wenn BK-Kanäle nicht vorhanden waren. Somit ist LRRC52 ein Bestandteil von BK-Kanälen in Hörsinneszellen von Säugetieren, der den Kanal unabhängig vom Calciumeinstrom arbeiten lässt.

    Dabei spielte den saarländischen Wissenschaftlerinnen auch ein Zufall in die Hände: „Ich dachte immer, die anderen Forschergruppen, die weltweit danach suchen, sind schneller als wir. Aber wir haben alle zuerst aufs falsche Pferd gesetzt“, erzählt Jutta Engel. Denn statt des Proteins LRRC52 hatten alle Wissenschaftlerinnen und Wissenschaftler, die nach der Ursache für dieses Phänomen gesucht haben, ein verwandtes Molekül, nämlich LRRC26, in Verdacht. „LRRC52 kannte man bisher nur als Protein in spermienbildenden Zellen im Hoden, in denen es eine wichtige Rolle spielt“, führt Isabelle Lang weiter aus. „Für das Ohr hatte das erst einmal niemand auf dem Schirm“, so die Forscherin, die den richtigen Einfall hatte, das LRRC52-Protein unter die Lupe zu nehmen.


    Contact for scientific information:

    Prof. Dr. Jutta Engel
    Tel.: (06841) 16-16221
    E-Mail: Jutta.Engel@uni-saarland.de

    MSc. Isabelle Lang
    Tel.: (06841) 16-16204
    E-Mail: Isabelle.Lang@uni-saarland.de


    Original publication:

    Isabelle Lang, Martin Jung, Barbara A. Niemeyer, Peter Ruth, Jutta Engel: Expression of the LRRC52 γ subunit (γ2) may provide Ca2+-independent activation of BK currents in mouse inner hair cells. DOI: 10.1096/fj.201900701RR


    Images

    Isabelle Lang
    Isabelle Lang
    Foto: Universität des Saarlandes/Thorsten Mohr
    None

    Prof. Dr. Jutta Engel
    Prof. Dr. Jutta Engel
    Foto: Universität des Saarlandes/Thorsten Mohr
    None


    Criteria of this press release:
    Journalists
    Biology, Medicine, Physics / astronomy
    regional
    Research results, Scientific Publications
    German


     

    Isabelle Lang


    For download

    x

    Prof. Dr. Jutta Engel


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).