idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/16/2019 10:00

Quantum computers by AQT and University of Innsbruck leverage Cirq for quantum algorithm development

Dr. Christian Flatz Büro für Öffentlichkeitsarbeit
Universität Innsbruck

    Quantum computers promise to solve problems that are out of reach for today's supercomputers. Programming quantum computers differs radically from what programmers are used today and thus new programming languages are required. A collaborative effort by Alpine Quantum Technologies (AQT) and the University of Innsbruck allows direct access to the ion-trap quantum computer in Innsbruck via Cirq, a framework developed by Google focused on developing and implementing quantum algorithms. Cirq can be used to explore quantum algorithms on the different hardware architectures, superconducting electronics and trapped ions.

    Quantum computers and software

    Several research facilities and companies are working on the realisation of quantum computers. There are multiple physical platforms that might host a future quantum computer, where AQT pursues trapped ions and Google is following an approach based on superconducting electronics. Each approach has different capabilities and limitations, generally reflected in different programming languages dependent on the device. This mix of program languages makes it hard for software engineers and programmers to use these quantum computer prototypes as well as to explore the capabilities of different architectures.

    Quantum Innsbruck and Quantum Munich

    Google developed a Python framework. called Cirq for creating, editing, and invoking Noisy Intermediate Scale Quantum (NISQ) circuits Dr. Markus Hoffmann from Google Munich explains “It's great to see the adoption of Cirq following the spirit of the Apache 2.0 open source license and making further hardware platforms accessible to the Cirq developer community.” The library supports multiple hardware architectures, based on superconducting electronics and atomic systems. Now, researchers and industry partners can readily run their quantum software on the Innsbruck quantum computers and also enable students to build out expertise on running quantum algorithms on actual hardware. Besides research, these efforts also benefit the quantum computer startup AQT in Austria. CEO Dr. Thomas Monz “is delighted to provide such a simple and effective interface between international quantum software developers and our Innsbruck-based quantum computer infrastructure to facilitate the realization of an entire suite of quantum apps for research and industry partners.” Dr. Philipp Schindler at the University of Innsbruck is convinced that the interface will enable new collaborations with research partners around the world.

    About AQT:
    AQT is a quantum computer startup located in Innsbruck, building on decades of experimental and theoretical expertise in the field of quantum information processing. The goal of AQT is to get quantum technologies out of a laboratory environment and turn these technologies into everyday-products. The long-term goal is a quantum computer based on trapped ions that can be readily operated from any PC or laptop.

    About University of Innsbruck:
    The work groups at the University of Innsbruck are, amongst other efforts, performing research on clocks, sensors, simulators and quantum computers with ion traps. Together with the Austrian Academy of Sciences, the University of Innsbruck is an internationally recognized center for quantum research.


    Contact for scientific information:

    Dr Thomas Monz
    Alpine Quantum Technologies (AQT)
    phone: +43 512 507 52452
    email: thomas.monz@aqt.eu
    web: https://www.aqt.eu/

    Dr Philipp Schindler
    Department of Experimental Physics
    University of Innsbruck
    phone: +43 512 507-52466
    email: philipp.schindler@uibk.ac.at
    web: https://www.uibk.ac.at

    Dr Markus Hoffmann
    Google
    email: markushoffmann@google.com


    Images

    Picture showing Prof. Peter Zoller (left, Univ. of Innsbruck), Dr. Markus Hoffmann (Google), and Dr. Thomas Monz (AQT) upon completing the projects
    Picture showing Prof. Peter Zoller (left, Univ. of Innsbruck), Dr. Markus Hoffmann (Google), and Dr. ...
    Source: M. R. Knabl


    Criteria of this press release:
    Business and commerce, Journalists, all interested persons
    Information technology, Physics / astronomy
    transregional, national
    Cooperation agreements
    English


     

    Picture showing Prof. Peter Zoller (left, Univ. of Innsbruck), Dr. Markus Hoffmann (Google), and Dr. Thomas Monz (AQT) upon completing the projects


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).