idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Share on: 
10/09/2019 19:00

Wie entstehen die stärksten Magnete des Universums?

Marietta Fuhrmann-Koch Kommunikation und Marketing
Universität Heidelberg

    Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

    Wie entstehen die stärksten Magnete des Universums?
    Deutsch-britisches Forscherteam simuliert Grundlagen für die Bildung von Magnetsternen

    Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen. An den Forschungsarbeiten waren Wissenschaftler der Universität Heidelberg, der Max-Planck-Gesellschaft, des Heidelberger Instituts für Theoretische Studien und der University of Oxford beteiligt. Die Ergebnisse wurden in „Nature“ veröffentlicht.

    Unser Universum ist von Magnetfeldern durchzogen. So hat beispielsweise die Sonne eine Hülle, in der konvektive Ströme ununterbrochen magnetische Felder erzeugen. „Obwohl massereiche Sterne keine solche Hülle besitzen, beobachten wir trotzdem bei rund zehn Prozent von ihnen an der Oberfläche ein starkes, großskaliges Magnetfeld“, sagt Dr. Fabian Schneider vom Zentrum für Astronomie der Universität Heidelberg, der Erstautor der „Nature“-Veröffentlichung ist. Derartige Felder wurden bereits 1947 entdeckt, ohne dass ihr Ursprung bislang vollständig geklärt werden konnte.

    Schon vor über einem Jahrzehnt vermuteten Wissenschaftler, dass starke Magnetfelder erzeugt werden, wenn zwei Sterne verschmelzen. „Bis jetzt waren wir jedoch nicht in der Lage, diese Hypothese zu testen, weil es uns an den dafür nötigen Computertools fehlte“, sagt Dr. Sebastian Ohlmann vom Rechenzentrum der Max-Planck-Gesellschaft in Garching bei München. Nun nutzten die Forscher den AREPO-Code, einen hochdynamischen Simulationscode auf den Computerclustern des Heidelberger Instituts für Theoretische Studien (HITS), um die Eigenschaften von Tau Scorpii (τ Sco) zu erklären. Dabei handelt es sich um einen magnetischen Stern, der sich 500 Lichtjahre von der Erde entfernt befindet.

    Bereits 2016 haben Fabian Schneider und Philipp Podsiadlowski von der University of Oxford herausgefunden, dass es sich bei τ Sco um einen sogenannten Blauen Nachzügler handelt. Diese Blue Stragglers sind das Ergebnis verschmolzener Sterne. „Wir gehen davon aus, dass Tau Scorpii sein starkes Magnetfeld beim Verschmelzungsprozess erhalten hat“, erklärt Prof. Dr. Philipp Podsiadlowski. Dass sich ein solches Feld durch starke Turbulenzen bei der Verschmelzung von zwei Sternen bilden kann, hat das deutsch-britische Forscherteam mit seinen Computersimulationen zu τ Sco nun gezeigt.

    Sternverschmelzungen kommen relativ häufig vor: Wissenschaftler nehmen an, dass ungefähr zehn Prozent aller massereichen Sterne in der Milchstraße das Produkt eines solchen Prozesses sind. Dies wiederum würde sehr gut zu der Häufigkeit passen, mit der magnetische massereiche Sterne beobachtet werden, wie Dr. Schneider betont. Astronomen gehen davon aus, dass genau diese Sterne bei Explosionen in Supernovae Magnetare bilden könnten.

    Dies dürfte auch bei τ Sco passieren, wenn der magnetische Stern am Ende seines Lebens explodiert. Die Computersimulationen lassen vermuten, dass das sich dabei bildende Magnetfeld ausreichend wäre, um die außergewöhnlich starken magnetischen Felder von Magnetaren zu erklären. „Magnetare besitzen vermutlich die stärksten Magnetfelder im gesamten Universum – bis zu einhundert Millionen Mal stärker als das stärkste Magnetfeld, das jemals von Menschen erzeugt wurde“, sagt Prof. Dr. Friedrich Röpke vom HITS.

    Die Forschungsarbeiten wurden vom Oxford Hintze Centre for Astrophysical Surveys und der Klaus Tschira Stiftung (Heidelberg) gefördert.

    Bilderläuterung zu Simulation_1.jpg und Simulation_2.jpg
    Die Simulation zeigt die Entstehung eines Magnetsterns, wie zum Beispiel Tau Scorpii. Auf der Abbildung ist ein Schnitt durch die Bahnebene zu sehen. Die Färbung zeigt die Stärke des Magnetfeldes, die leichte Schraffierung spiegelt die Richtung der magnetischen Feldlinie wider.
    Bildnachweis: Ohlmann/Schneider/Röpke

    Kontakt:
    Universität Heidelberg
    Kommunikation und Marketing
    Pressestelle, Telefon (06221) 54-2311
    presse@rektorat.uni-heidelberg.de


    Contact for scientific information:

    Dr. Fabian Schneider
    Zentrum für Astronomie der Universität Heidelberg (ZAH)
    Astronomisches Rechen-Institut
    Telefon (06221) 54-1881 oder (06221) 533-388
    fabian.schneider@uni-heidelberg.de


    Original publication:

    F.R.N. Schneider, S.T. Ohlmann, P. Podsiadlowski, F.K. Röpke, S.A. Balbus, R. Pakmor, V. Springel: Stellar mergers as the origin of magnetic massive stars. Nature, doi: 10.1038/s41586-019-1621-5


    More information:

    http://www.fabian-schneider.com


    Criteria of this press release:
    Journalists
    Physics / astronomy
    transregional, national
    Research results
    German


    Die Simulation zeigt die Entstehung eines Magnetsterns, wie zum Beispiel Tau Scorpii.


    For download

    x

    Die Simulation zeigt die Entstehung eines Magnetsterns, wie zum Beispiel Tau Scorpii.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).

    Cookies optimize the use of our services. By surfing on idw-online.de you agree to the use of cookies. Data Confidentiality Statement
    Okay