idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/05/2019 09:54

How cells stick together tightly

Katrin Boes Presse und Öffentlichkeitsarbeit
Max-Planck-Institut für molekulare Zellbiologie und Genetik

    Dresden researchers uncover self-organization of tight junctions, the glue between cells.

    Our organs are specialized compartments, each with its own milieu and function. To seal our organs, the cells in the tissue must form a barrier which is tight even down to the level of molecules. This barrier is formed by a protein complex that “sticks” all the cells together without any gaps. The loss of this barrier can lead to many diseases, including the infiltration of pathogens into our internal system. Since maintaining the tissue barrier is central to our organ functions, it is important to understand how this barrier is created between cells. Researchers at the Max Planck Institute for Molecular Cell Biology and Genetics (MPI-CBG) in Dresden discovered that cells use a process similar to condensation of water droplets on a cold window to form cell junctions. Specific proteins condense as droplets on the cell membrane when neighboring cells touch. These droplets enrich all the components required to create a stable barrier between cells. The results are published in the journal Cell.

    The surface of our organs is lined with a layer of epithelial cells. These cells play an important role in protecting our organs, adapting them to a changing environment, and transporting molecules in and out of tissues. What seals epithelial tissue are tight junctions that act as the molecular barrier between cells. A key question for scientists was how this molecular complex robustly assembles between cells. The team around MPI-CBG research group leader Alf Honigmann set out to piece together the building blocks that could explain how tight junctions are built.

    One key building block of tight junctions is the family of ZO proteins which are located on the inside of cells. Using a combination of tissue imaging, gene editing, and biochemistry, the researchers found that the proteins inherently contain regions that allow them to stick to one another and form droplets on the membrane of epithelial cells. This ability allows the ZO proteins to become more concentrated and to selectively sequester adhesion proteins, needed for tight junction assembly. Oliver Beutel, the first author of the study, explains: “This process is somewhat similar to the phenomenon of water condensing on a cold glass window, spontaneously forming liquid droplets and streams. In the case of tight junctions, the ZO proteins condense on the inside of epithelial cell membranes to form a hub where all the necessary components can be encapsulated to assemble into a tight junction.” These findings suggest that the properties of ZO proteins can serve as a template to reconstruct the architecture and function of tight junctions.

    Alf Honigmann, the supervisor of the study, concludes: “This study reveals an important mechanism, which epithelial cells use to establish tight junctions. Our work on this protein machinery exemplifies the principles how cells leverage simple physical phenomena like condensation to assemble complex molecular structures.” He adds: “Our findings imply exciting possibilities how junctions can quickly remodel during tissue growth and repair.”


    Contact for scientific information:

    Dr. Alf Honigmann
    +49 (0) 351 210 2969
    honigmann@mpi-cbg.de


    Original publication:

    Oliver Beutel, Riccardo Maraspini, Karina Pombo-García, Cécilie Martin-Lemaitre, Alf Honigmann: “Phase Separation of Zonula Occludens Proteins Drives Formation of Tight Junctions” Cell, 31. October, 2019, doi: https://doi.org/10.1016/j.cell.2019.10.011


    Images

    Formation of the tissue barrier: One of the proteins required to make the tight junction was labeled with a fluorescent dye. Using fluorescence microscopy, the labeled proteins were observed live.
    Formation of the tissue barrier: One of the proteins required to make the tight junction was labeled ...
    Beutel et al.
    None


    Criteria of this press release:
    Journalists
    Biology
    transregional, national
    Research results, Scientific Publications
    English


     

    Formation of the tissue barrier: One of the proteins required to make the tight junction was labeled with a fluorescent dye. Using fluorescence microscopy, the labeled proteins were observed live.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).