idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/07/2019 14:46

TU Berlin: Can our thoughts alter our brains?

Stefanie Terp Stabsstelle Kommunikation, Events und Alumni
Technische Universität Berlin

    Researchers investigate the structural impact of brain-computer interfaces on brain substance

    Joint press release of the Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, the Public University of Navarre, and TU Berlin

    Can our thoughts alter our brains?

    Researchers investigate the structural impact of brain-computer interfaces on brain substance

    Brain-computer interfaces (BCI) work on the principle that measurable changes in electrical brain activity occur just by thinking about performing a task. Signals can be read by an EEG (electroencephalography), evaluated, and then converted into control signals via a machine learning system, which can then be used to operate a computer or a prosthesis. In a recently published study in the Journal of Physiology, researchers from the Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, the Public University of Navarre, and TU Berlin demonstrated that after just one hour’s training with a BCI significant changes could be detected in test subjects’ brains, meaning that training with the BCI also has direct repercussions on the neuronal structure and function of the brain.

    The interdisciplinary study examined the influence of two different types of BCI on the brains of test subjects with no prior experience of this technology. The first subgroup was given the task of imagining that they were moving their arms or feet, in other words a task requiring the use of the brain’s motor system. The task given to the second group addressed the brain’s visual center by requiring them to recognize and select letters on a screen. Experience shows that test subjects achieve good results in visual tasks right from the outset and that further training does not improve these results, whereas addressing the brain’s motor system is much more complex and requires practice. In order to document potential changes, test subjects’ brains were examined before and after each BCI experiment using a special visualizing process – MRT (magnetic resonance tomography).

    “We know that intensive physical training affects the plasticity of the brain,” says Dr. Till Nierhaus of the Max Planck Institute for Human Cognitive and Brain Sciences. Plasticity refers to the brain’s ability to alter depending on how it is used. Scientists distinguish here between functional plasticity, where changes only occur in the intensity of the signals between the individual synapses, and structural plasticity. Structural plasticity refers to a change in nerve cells or even the forming of new nerve cells. “We asked ourselves if these impacts on the brain’s plasticity would also occur in purely mental BCI experimental tasks, in other words if test subjects only think of a task without actually performing it,” says Dr. Carmen Vidaurre, researcher at the Public University of Navarre.

    The results did indeed show measurable changes in precisely those regions of the brain specifically required to conduct the tasks. In other words, changes in the visual areas of the brain in test subjects given the visual task and changes in the motor area in test subjects who practiced imagining moving a part of their body. It is particularly worth noting that changes occurred within very short periods of time (one hour) using BCI, rather than weeks as is the case in physical training. “It is still not clear if these changes would also occur if test subjects were not provided with feedback via the BCI system that their brain signals could be successfully read,” Dr. Nierhaus points out. However the results do in general demonstrate that the effects of training with a brain-computer interface could have therapeutic benefits by stimulating specific regions of the brain.

    “The spatial specificity of the impacts achieved with BCI could be used to target those areas of the brain affected by strokes,” explains Professor Arno Villringer, director of the neurology department at the MPI for Human Cognition and Brain Sciences. “Machine learning processes serve to decode or translate BCI activities into control signals,” adds Professor Klaus-Robert Müller, professor of machine learning. “This is the only way to convert individual BCI activities into control signals without lengthy training periods This customized reading of the BCI will be decisive in determining whether the technology can be used in rehabilitation systems in the future."

    More information: https://physoc.onlinelibrary.wiley.com/doi/10.1113/JP278118

    For further information, please contact:
    Professor Dr. Klaus Robert Müller
    TU Berlin
    Chair of Machine Learning
    phone.: 030/314 78621
    Email: klaus-robert.mueller@tu-berlin.de


    More information:

    https://physoc.onlinelibrary.wiley.com/doi/10.1113/JP278118


    Images

    Criteria of this press release:
    Journalists
    Biology, Chemistry, Information technology, Medicine
    transregional, national
    Research projects, Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).