Superkritisch,super gut! Dresdner Wissenschaftler entwickeln umweltschonende Energietechnologie mit superkritischem CO2

idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Share on: 
11/08/2019 10:10

Superkritisch,super gut! Dresdner Wissenschaftler entwickeln umweltschonende Energietechnologie mit superkritischem CO2

Kim-Astrid Magister Pressestelle
Technische Universität Dresden

    Wissenschaftler der TU Dresden und des Helmholz-Zentrums Dresden-Rossendorf (HZDR) entwickeln in den kommenden drei Jahren gemeinsam mit der Siemens AG und dem Institut für Solarforschung des Deutschen Zentrums für Luft- und Raumfahrt (DLR) eine neue Energietechnologie, die mithilfe von superkritischem Kohlendioxid (sCO2) nachhaltig Strom produziert. Als Wärmequellen wollen die Forscher ausschließlich Solar- und Abwärme nutzen. Für das Verbundprojekt „CARBOSOLA“ hat das Bundesministerium für Wirtschaft und Energie nun 2,2 Mio Euro zur Verfügung gestellt. Das Forschungsvorhaben markiert den Einstieg Deutschlands in die sCO2-Technologie für die Stromerzeugung aus nichtfossilen Wärmequellen.

    Als superkritisch wird der Zustand bezeichnet, in dem Kohlenstoffdioxid weder flüssig noch gasförmig vorliegt. Das erreicht die Substanz bei etwa 31 Grad Celsius und 74 bar. Hier verbinden sich vorteilhafte Eigenschaften der Flüssigkeit und des Gases. Turbinen zur Stromerzeugung arbeiten dann mit einem höheren Wirkungsgrad und sind sehr viel kleiner als Dampfturbinen der gleichen Leistung. Die Energiewissenschaftler und Ingenieure wollen mit Hilfe von superkritischem CO2 die Abwärme von industriellen Prozessen, Motoren, Gasturbinen und Wärme aus Solarkraftwerken für die nachhaltige Stromerzeugung nutzen. Damit kann der globale CO2-Ausstoß erheblich gesenkt werden.

    „Wir wollen eine umweltschonende Technologie entwickeln, die mit superkritischem CO2 funktioniert und nur noch etwa ein Fünftel so groß ist wie eine herkömmliche Dampfturbine. Da sich das superkritische Kohlendioxid in einem geschlossenen Prozess befindet, wird kein CO2 freigesetzt. Unser Ziel ist es, Wärme besser zu nutzen als das heute der Fall ist und die Energieanlagen zu verkleinern. Gleichzeitig ist der Wirkungsgrad deutlich höher als bisher“, so Prof. Uwe Gampe, Projektkoordinator an der TU Dresden und selbst Energietechniker.

    Mit dem Bau einer Versuchsanlage in Dresden-Rossendorf sowie der Entwicklung eines Demonstrators im Megawatt-Leistungsbereich werden wichtige Grundsteine für die Entwicklung praxistauglicher Energieanlagen auf Basis von superkritischem CO2 gelegt. „Mit unseren experimentellen und numerischen Untersuchungen wollen wir noch offene wissenschaftliche und technologische Fragestellungen zu superkritischen Kohlendioxid-Prozessen beantworten. Dies betrifft das Strömungsverhalten und die Wärmeübertragung, Messtechniken, Materialfragen sowie effektive Regelungsstrategien“, so Prof. Uwe Hampel, Inhaber der Professur für Bildgebende Messverfahren für die Energie- und Verfahrenstechnik der TU Dresden und Leiter der Abteilung für Experimentelle Thermofluiddynamik am Helmholtz-Zentrum Dresden-Rossendorf.

    Weitere Informationen:
    Im März 2019 wurde das „Superkritische Kohlendioxid-Lab“ an der TU Dresden eröffnet. Das Forschungslabor bündelt Kompetenzen rund um superkritisches CO2 und stellt eine Plattform für die interdisziplinäre Zusammenarbeit dar. Das Projekt CARBOSOLA und das suCOO-Lab sind Beispiele für die enge Kooperation der TU Dresden mit außeruniversitären Forschungseinrichtungen im Rahmen des Wissenschaftsverbundes DRESDEN-concept. Vor wenigen Wochen wurde unter Beteiligung der Dresdner Wissenschaftler die „European sCO2 Research & Development Alliance“ in Paris gegründet. Das Netzwerk soll Wissenschaftler, Hersteller und Anwender auf europäischer Ebene zusammenbringen. Im Gegensatz zu den USA und Asien steht die sCO2-Technologie in Europa noch am Anfang.

    Pressefoto1+2: Eine Turbine, die mit superkritischem CO2 funktioniert, muss bei gleicher Leistung nur etwa ein Fünftel so groß sein wie eine herkömmliche Dampfturbine. Foto: Karsten Eckold/TU Dresden

    Pressevideo: Das Video zeigt, wie flüssiges und gasförmiges CO2 erhitzt wird und sich die Phasengrenze zwischen flüssig und gasförmig auflöst. Dieser Zustand wird superkritisches CO2 genannt. Er wird bei etwa 31 Grad Celsius und 74 bar erreicht. Video: Sebastian Rath/TU Dresden

    Download Bild-/Videomaterial: https://cloudstore.zih.tu-dresden.de/index.php/s/fRq5L9FpsZr5EFd


    Contact for scientific information:

    Prof. Dr.-Ing. Uwe Gampe
    Professur für Thermische Energiemaschinen und -anlagen
    Institut für Energietechnik
    Fakultät Maschinenwesen
    Technische Universität Dresden
    Tel.: 0351 463 34491
    eMail: uwe.gampe@tu-dresden.de

    Prof. Dr.-Ing. Uwe Hampel
    Institut für Fluiddynamik am Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
    Professur für Bildgebende Messverfahren für die Energie- und Verfahrenstechnik
    Institut für Energietechnik, Fakultät Maschinenwesen
    Technische Universität Dresden
    Tel.: 0351 260 3460
    eMail: uwe.hampel@tu-dresden.de


    Criteria of this press release:
    Journalists
    Energy, Mechanical engineering
    transregional, national
    Cooperation agreements, Research projects
    German


    sCO2-Turbine


    For download

    x

    sCO2-Turbine


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).

    Cookies optimize the use of our services. By surfing on idw-online.de you agree to the use of cookies. Data Confidentiality Statement
    Okay