idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/11/2019 10:47

Magnete für die Fläche

Hochschulkommunikation Hochschulkommunikation
Eidgenössische Technische Hochschule Zürich (ETH Zürich)

    ETH-Wissenschaftler entwickelten würfelförmige magnetische Bausteine, die einerseits zu flächigen Objekten zusammengefügt werden können und sich andererseits über ein externes Magnetfeld steuern lassen. Sie eignen sich für Soft-Robotics-Anwendungen.

    Wer schon einmal versucht hat, mehrere der kleinen, starken Würfelmagnete unmittelbar nebeneinander an einer Magnetwand zu befestigen, weiss es: Das geht nicht. Stattdessen ordnen sich die Magnete stets in einer Säule an, die senkrecht von der Magnetwand absteht. Ebenfalls beinahe unmöglich ist es, mehrere Reihen solcher Magnete so aneinanderzufügen, dass sich eine Fläche bildet. Grund dafür ist, dass Magnete sogenannte Dipole sind. Gleiche Pole stossen sich ab, stattdessen heftet sich immer der Nordpol des einen Magneten an den Südpol eines anderen. Dadurch bildet sich eine Säule, in der alle Magnete gleich ausgerichtet sind.

    Forschende der ETH Zürich haben nun würfelförmige magnetische Bausteine geschaffen, mit denen es erstmals möglich ist, flächige Objekte zu bilden. Die neuen Bausteine – die Forschenden nennen sie Module – sind keine Dipole, sondern Quadrupole. Das heisst, sie haben je zwei Nord- und Südpole. Im Innern der im 3D-Druck aus Kunststoff gefertigten Module befinden sich je zwei kleine herkömmliche Dipolmagnete, und zwar so, dass jeweils deren gleiche Pole gegeneinander gerichtet sind (siehe Bild). Diese Bausteine lassen sich schachbrettartig zu beliebigen flächigen Objekten zusammenfügen: Weil sich Süd- und Nordpol jeweils anziehen, hat ein Quadrupol-Baustein, dessen beide Südpole links und rechts liegen, auf seinen vier Seitenflächen als Nachbarn Bausteine, die um 90 Grad gedreht sind, also deren Nordpole links und rechts liegen.

    Nach diesem Prinzip fertigten die Forscher farbige Module mit einer Kantenlänge von gut zwei Millimetern an. Zu Präsentationszwecken fügten sie sie zu «Pixel-Art»-Emojis zusammen. Mögliche Anwendungen gehen jedoch über diese Spielerei hinaus. «Interessant scheinen uns vor allem Anwendungen im Bereich Soft Robotics», sagt Hongri Gu, Doktorand in der Gruppe von ETH-Professor Bradley Nelson und Erstautor der Arbeit, welcher die Wissenschaftler kürzlich in der Fachzeitschrift Science Robotics [http://dx.doi.org/10.1126/scirobotics.aax8977] veröffentlichten.

    Quadrupol und Dipol zugleich

    Der erwähnte Quadrupol dominiert die magnetischen Eigenschaften der Module. Allerdings ist es ein wenig komplizierter, denn zusätzlich zum starken Quadrupol konzipierten die Forscher in den Bausteinen einen schwachen Dipol. Dies erreichten sie, indem sie die ins Modul eingebetteten kleinen Magnete nicht parallel zueinander, sondern leicht abgewinkelt anordneten (siehe Bild).

    «Dies führt dazu, dass sich die Module wie eine Kompassnadel an einem äusseren Magnetfeld ausrichten», erklärt ETH-Doktorand Gu. «Über ein veränderbares Magnetfeld ist es somit möglich, die aus den Modulen gebauten Objekte zu bewegen. In Kombination mit flexiblen Verbindungen kann man gar Roboter bauen, die sich durch ein Magnetfeld steuern lassen.»

    Gu sagt, dass es in ihrer Arbeit zunächst darum gegangen sei, das neue Prinzip zu entwickeln. Es sei grössenunabhängig, und nichts spreche dagegen, nun sehr viel kleinere Quadrupolmodule zu entwickeln. Ausserdem untersuchen die Forscher, wie man die Module nutzen könnte, um eine lineare Struktur mithilfe eines Magnetfelds zu einem mehrdimensionalen Objekt zusammenzufügen. Dies liesse sich in Zukunft auch in der Medizin nutzen: Es wäre denkbar, Objekte wie zum Beispiel Stents aus einem mit solchen Modulen bestückten Faden zu bilden. Diesen Faden könnten man vergleichsweise einfach minimal-invasiv über eine nur kleine Körperöffnung in den Körper einführen und dann im Körperinnern mithilfe eines Magnetfelds zur finalen mehrdimensionalen Struktur zusammenfügen.


    Original publication:

    Gu H, Boehler Q, Ahmed D, Nelson BJ: Magnetic quadrupole assemblies with arbitrary shapes and magnetizations, Science Robotics 2019, 4: eaax8977, doi: 10.1126/scirobotics.aax8977 [http://dx.doi.org/10.1126/scirobotics.aax8977]


    Images

    Quadrupolmodule lassen sich zu flächigen Objekten zusammenfügen, auch zu «Pixel-Art»-Emojis wie diesen.
    Quadrupolmodule lassen sich zu flächigen Objekten zusammenfügen, auch zu «Pixel-Art»-Emojis wie dies ...
    ETH Zürich / Hongri Gu
    None

    Dipolmagnet und Quadruoplmodul im Schema.
    Dipolmagnet und Quadruoplmodul im Schema.
    Quelle: Gu H et al. Science Robotics 2019
    None


    Criteria of this press release:
    Journalists
    Mechanical engineering
    transregional, national
    Research results, Scientific Publications
    German


     

    Quadrupolmodule lassen sich zu flächigen Objekten zusammenfügen, auch zu «Pixel-Art»-Emojis wie diesen.


    For download

    x

    Dipolmagnet und Quadruoplmodul im Schema.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).