Neu entwickeltes Glas ist biegsam

idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
idw-Abo
Medienpartner:
Wissenschaftsjahr


Share on: 
11/15/2019 12:56

Neu entwickeltes Glas ist biegsam

Stefan Meisterle Öffentlichkeit und Kommunikation
Österreichische Akademie der Wissenschaften

    Eine internationale Forschungsgruppe mit Beteiligung der Österreichischen Akademie der Wissenschaften hat ein Glasmaterial entwickelt, das sich bei Raumtemperatur bruchfrei verformen lässt. Das berichtet das Team aktuell in "Science". Das extrem harte und zugleich leichte Material verspricht ein großes Anwendungspotential – von Smartphone-Displays bis hin zum Maschinenbau.

    Gläser sind ein wesentlicher Bestandteil der modernen Welt. Dabei handelt es sich im Alltag meist um sauerstoffhaltige Gläser, wie sie etwa für Fenster und Trinkgläser verwendet werden. Da derartige Gläser bei Raumtemperatur aber äußerst spröde sind und bekanntlich rasch brechen, sind ihre Einsatzmöglichkeiten in vielen Bereichen eingeschränkt.

    Dass Glas bei Raumtemperatur aber wesentlich verformbarer sein kann als bisher angenommen, haben nun Forscher/innen des Erich-Schmid-Instituts für Materialwissenschaft der Österreichischen Akademie der Wissenschaften (ÖAW) zusammen mit Kolleg/innen aus Finnland, Frankreich, Italien, USA, Norwegen und der Schweiz experimentell und in Simulationen festgestellt. Ihre Ergebnisse stellen sie aktuell im Fachmagazin „Science“ vor.

    Verformtes Glas statt Scherben

    Den Durchbruch bei den Forschungsarbeiten, die an mehreren Standorten – darunter am ÖAW-Institut in Leoben in der Steiermark – realisiert wurden, lieferten spezielle Experimente mit Aluminiumoxid, einer Sauerstoffverbindung von Aluminium, die ein Bestandteil von herkömmlichem Glas ist. Indem die Forscher/innen diese Substanz extrem schnell abkühlten, konnten sie innen eine Kristallisation im Zuge der Glasherstellung verhindern und damit die Brüchigkeit des Materials drastisch reduzieren.

    „Es war überraschend, dass Glas auch bei Raumtemperatur über eine so hohe Plastizität verfügen kann,“ sagt Megan Cordill, Ko-Autorin der Publikation und Materialwissenschaftlerin der ÖAW. „Gemeinsam mit unseren internationalen Kolleg/innen konnten wir zeigen, dass sich Aluminiumoxid bei Raumtemperatur und hoher Dehnungsrate dauerhaft ohne Bruch verformen kann.“ Das bei den Experimenten entstandene Glasmaterial zeichnet sich dadurch aus, wie Cordill erläutert, dass dessen Atome keine reguläre Ordnung haben, sondern zufällig gemischt werden und damit die hohe Verformbarkeit des gesamten Materials ermöglichen.

    Hochgradig dehnbares Material

    Durch anschließende Simulationen wurden die experimentellen Ergebnisse weiter analysiert. Dabei fanden die Forscher/innen heraus, dass das neue Material sogar eine Gesamtdehnung von 100 Prozent erreichen kann, wenn es dicht und frei von Fehlern ist. Das bedeutet, dass die Länge verdoppelt werden kann, bevor das Material bricht, wie Zugversuche, Druckversuche und Scherversuche bestätigten.

    „Wir haben unsere Beobachtungen durch 3D-Messungen mittels Rasterkraftmikroskopie gemacht. So konnten wir die experimentell erreichte Verformung auch in Simulationen abbilden“, erläutert Cordill.

    Härter und leichter als Stahl

    Das neu entwickelte Glasmaterial hat zugleich noch weitere, vorteilhafte Eigenschaften: So erwies es sich sowohl als härter und zugleich als leichter als Stahl. Auch dadurch eröffnen sich zahlreiche Anwendungsmöglichkeiten. So könnte verformbares Glas in unterschiedlichsten Geräten zum Einsatz kommen, von biegsamen und zugleich extrem soliden Smartphone-Displays über Batterien bis hin zum Maschinenbau. Weitere Forschungen mit dem neu entwickelten Material sollen dabei helfen, dieses Potenzial für die Praxis auszuschöpfen.


    Contact for scientific information:

    Megan Cordill
    Erich-Schmid-Institut für Materialwissenschaft
    Österreichische Akademie der Wissenschaften
    Jahnstrasse 12, 8700 Leoben
    T +43 3842804-112
    megan.cordill@oeaw.ac.at


    Original publication:

    „Highly ductile amorphous oxide at room temperature and high strain rate“, E. J. Frankberg, J. Kalikka, F. García Ferré, L. Joly-Pottuz, T. Salminen, J. Hintikka, M. Hokka, S. Koneti, T. Douillard, B. Le Saint, P. Kreiml, M. J. Cordill, T. Epicier, D. Stauffer, L. Roiban, J. Akola, F. Di Fonzo, E. Levänen, K. Masenelli-Varlot, Science 2019
    DOI: https://dx.doi.org/10.1126/science.aav1254


    Criteria of this press release:
    Journalists
    Chemistry, Electrical engineering, Information technology, Materials sciences, Mechanical engineering
    transregional, national
    Research results, Scientific Publications
    German


    ÖAW-Materialforscherin Megan Cordill am Mikroskop


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).

    Cookies optimize the use of our services. By surfing on idw-online.de you agree to the use of cookies. Data Confidentiality Statement
    Okay