Extrem belastbar und zugfest, und dabei zäh und federleicht – Materialien mit dieser außergewöhnlichen Kombination von Eigenschaften werden in vielen Industriebranchen sowie in der Medizin dringend benötigt und sind ebenso für die wissenschaftliche Forschung von großem Interesse. Polymerfasern mit eben diesen Eigenschaften hat jetzt ein Forschungsteam der Universität Bayreuth entwickelt. Gemeinsam mit Partnern in Deutschland, China und der Schweiz wurden die Polymerfasern charakterisiert. In der Zeitschrift "Science" stellen die Wissenschaftler ihre Ergebnisse vor.
„Die von uns entdeckten Fasern können mit High-Tech-Verfahren, die in der Industrie bereits etabliert sind, leicht hergestellt werden – und zwar auf der Basis von Polymeren, die weltweit gut verfügbar sind. Eine einzelne Faser ist so dünn wie ein menschliches Haar, wiegt weniger als eine Fruchtfliege und ist dennoch sehr stark: Sie kann ein Gewicht von 30 Gramm heben, ohne zu reißen. Dies entspricht etwa dem 150.000-fachen Gewicht einer Fruchtfliege. Bei Experimenten mit der hohen Zugfestigkeit dieser Fasern wird ihre außerordentliche Zähigkeit sichtbar. Dies bedeutet, dass jede einzelne Faser viel Energie aufnehmen kann“, erklärt Prof. Dr. Andreas Greiner, Inhaber des Lehrstuhls für Makromolekulare Chemie II an der Universität Bayreuth, der die Forschungsarbeiten geleitet hat. Ebenfalls beteiligt waren Forscher am Forschungszentrum Jülich, an der Martin-Luther-Universität Halle-Wittenberg, am Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS, an der RWTH Aachen, der Jiangxi Normal University, Nanchang, und der ETH Zürich.
Aufgrund ihrer besonderen Eigenschaften eignen sich die Polymerfasern hervorragend für technische Bauteile, die hohen Belastungen ausgesetzt sind. Sie ermöglichen innovative Anwendungen auf den verschiedensten Gebieten, beispielsweise in der Textilindustrie oder der Medizintechnik, im Automobilbau oder in der Luft- und Raumfahrtindustrie. Zudem sind die Polymerfasern gut recycelbar. „Wir sind sicher, dass wir mit unseren Forschungsergebnissen das Tor zu einer neuen zukunftsweisenden Materialklasse weit aufgestoßen haben. Praktische Anwendungen seitens der Industrie sind schon in naher Zukunft zu erwarten. In den Polymerwissenschaften werden unsere Fasern wertvolle Dienste bei der weiteren Erforschung und Entwicklung hochleistungsfähiger Funktionsmaterialien leisten können“, sagt Greiner.
Die chemische Basis dieser vielversprechenden Fasern ist Polyacrylnitril. Eine einzige Faser, die einen Durchmesser von rund 40.000 Nanometern hat, besteht wiederum aus bis zu 4.000 ultradünnen Fibrillen. Diese Fibrillen werden durch geringe Mengen eines Zusatzstoffes verknüpft. Dreidimensionale Röntgenbilder zeigen, dass die Fibrillen innerhalb der Faser fast ausnahmslos in der gleichen Längsrichtung angeordnet sind. „Wir haben diese Polymerfasern in einem Labor für Elektrospinnen an der Universität Bayreuth präpariert und umfassend auf ihre Eigenschaften und Verhaltensweisen hin getestet. Die einzigartige Festigkeit in Kombination mit hoher Zähigkeit hat uns dabei immer wieder fasziniert“, berichtet die Bayreuther Polymerwissenschaftlerin Prof. Dr. Seema Agarwal.
Erstautor der in "Science" veröffentlichten Studie ist der Bayreuther Chemie-Doktorand Xiaojian Liao. „Es freut mich sehr, dass ich im Rahmen meiner Doktorarbeit zu diesem materialwissenschaftlichen Forschungserfolg beitragen konnte. Die intensiven interdisziplinären Kontakte zwischen Chemie, Physik und Materialwissenschaften auf dem Bayreuther Campus haben mir in den letzten Jahren wichtige Anregungen gegeben“, sagt Liao.
Weitere Fotos zum Download:
http://www.uni-bayreuth.de/de/universitaet/presse/pressemitteilungen/2019/160-Po...
Video zu den neuen Polymerfasern (engl.)
https://youtu.be/m9khIspNmUo
Prof. Dr. Andreas Greiner
Universität Bayreuth,
Lehrstuhl Makromolekulare Chemie II und Bayerisches Polymerinstitut (BPI)
Telefon: +49 (0)921 / 55-3399
E-Mail: andreas.greiner@uni-bayreuth.de
Xiaojian Liao, Martin Dulle, Juliana Martins de Souza e Silva, Ralf B. Wehrspohn, Seema Agarwal, Stephan Förster, Haoqing Hou, Paul Smith, Andreas Greiner: High strength in combination with high toughness in robust and sustainable polymeric materials. Science (2019), DOI: http://dx.doi.org/10.1126/science.aay9033
Science hat diesem Forschungserfolg in derselben Ausgabe einen eigenen Beitrag gewidmet: https://science.sciencemag.org/content/366/6471/1314
Elektrospinnen einer multifibrillaren Polyacrylnitrilfaser.
Foto: Universität Bayreuth / Jürgen Rennecke.
None
Vorbereitung zum Elektrospinnen.
Foto: Universität Bayreuth / Jürgen Rennecke.
None
Criteria of this press release:
Business and commerce, Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
Chemistry, Materials sciences
transregional, national
Research results, Scientific Publications
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).