idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/18/2020 09:37

Researchers discover a new biochemical compound that can break down environmental pollutants

Nicolas Scherger Presse- und Öffentlichkeitsarbeit
Albert-Ludwigs-Universität Freiburg im Breisgau

    Enzymes with flavin cofactor play an important part in plants, fungi, bacteria and animals: as oxygenases they incorporate oxygen into organic compounds. For instance this allows people to excrete foreign substances more effectively. Until now scientists were agreed that such flavin-dependent oxygenases use flavin C4a-peroxide as oxidizing agent. This is formed by the C4a-atom of the flavin cofactor reacting with atmospheric oxygen (O2), before one of the two oxygen atoms are transferred to the compound.

    A team headed by Dr. Robin Teufel from the Institute of Biology II at the University of Freiburg has discovered that O2 also reacts to flavin N5-peroxide with the N5-atom of the flavin cofactor. The researchers have published their results in the journal Nature Chemical Biology.

    The newly-discovered flavin N5-peroxide has different reactive characteristics than the flavin C4a-peroxide. Some bacteria use this to break down stable chemical compounds, including environmental pollutants such as dibenzothiophene, a component of crude oil, or hexachlorobenzene, a plant protection agent. Using X-ray structural analysis and mechanistic studies the scientists were able to clarify how the formation of this flavin N5-peroxide is controlled at an enzymatic level.

    In future Teufel and his team want to study how widespread this novel flavin biochemistry is in nature. They also want to improve understanding of the role, reactivity and functionality of the flavin N5-peroxide. With their work they are enabling further studies that will in future allow the prediction of flavin enzyme functionality or modification using biotechnology.

    Robin Teufel and his work group are studying enzymatic reactions of the bacterial metabolism at the Institute of Biology II of the University of Freiburg.

    Original publication:
    Matthews, A., Saleem-Batcha, R., Sanders, J.N., Stull, F., Houk, K.N., & Teufel, R. (2020): Aminoperoxide adducts expand the catalytic repertoire of flavin monooxygenases. In: Nature Chemical Biology. DOI: 10.1038/s41589-020-0476-2

    Contact:
    Dr. Robin Teufel
    Institute of Biology II
    Tel.: +49 761 203-97199
    robin.teufel@zbsa.uni-freiburg.de


    Original publication:

    https://www.nature.com/articles/s41589-020-0476-2


    Images

    Criteria of this press release:
    Journalists
    Biology, Chemistry
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).