idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/12/2020 10:16

Automatische Analyse der Gefäße des gesamten Gehirns

Philipp Kressirer Kommunikation und Medien
Klinikum der Universität München

    Erkrankungen des Gehirns gehen oft mit typischen Veränderungen der Blutgefäße einher. Münchner Wissenschaftlerinnen und Wissenschaftler des LMU Klinikums, des Helmholtz Zentrums München und der Technischen Universität München (TUM) haben jetzt ein Verfahren vorgestellt, mit dem sich die Strukturen und eventuelle krankhafte Veränderungen aller Gefäße – auch der feinsten Kapillaren – analysieren lassen. Sie haben mit diesem Verfahren, das auf einer Kombination von biochemischen Methoden und Künstlicher Intelligenz beruht, zunächst die gesamten Gefäße im Gehirn einer Maus dargestellt.

    Veränderungen in den Blutgefäßen kennzeichnen etliche schwere Hirnerkrankungen – von der traumatischen Hirnverletzung bis zum Schlaganfall. Selbst bei Erkrankungen wie der Alzheimerschen Demenz sind die feinen Kapillaren verändert. Kurzum: Die Analyse der Blutgefäße ist wesentlich, um sowohl die normale als auch die krankhafte Gehirnfunktion zu verstehen. „Wir sind diesem Ziel jetzt deutlich näher gekommen“, erklärt Ali Ertürk, Direktor des Instituts für Tissue Engineering und Regenerative Medizin am Helmholtz Zentrum München und Principal Investigator am Institut für Schlaganfall- und Demenzforschung des LMU Klinikums.

    Organe werden durchsichtig

    Zunächst ist es Ertürks Team gelungen, mit hochauflösender Fluoreszenz-Mikroskopie, das Gefäßsystem der Gehirne von Mäusen abzubilden, ohne die Proben kleinteilig zerschneiden zu müssen. Dafür hat das Team die Technik des „Tissue Clearing“ weiterentwickelt. Dabei werden biologische Gewebe mit speziellen Farbstoffen behandelt, die sie für die Fluoreszenz-Mikroskopie transparent machen. „Doch bisher war es mit dieser Technik nur möglich, entweder nur die großen oder die kleinen Gefäße des Gehirns darzustellen“, sagt Mihail Ivilinov Todorov, Doktorand bei Ertürk.

    Deshalb haben die Münchner Wissenschaftler erstmals zwei Farbstoffe kombiniert. „So haben wir einige schöne Bilder der Gehirngefäße inklusive der Kapillaren bekommen“, erklärt der Biologe weiter.

    Künstliche Intelligenz analysiert Gefäßnetzwerk

    Mithilfe Künstlicher Intelligenz haben Forscherinnen und Forscher aus der Arbeitsgruppe von Björn Menze, Professor für Bildbasierte biomedizinische Modellierung an der Technischen Universität München (TUM), auf Grundlage dieser Bilder das gesamte Gefäßnetzwerk des Gehirns bis in seine feinsten Verästelungen rekonstruiert. Eine solche Rekonstruktion liefert nicht nur Bilder, sondern macht es insbesondere möglich, die Gefäßstrukturen quantitativ auszuwerten. „So können wir zum Beispiel für verschiedene Hirnareale statistisch erfassen, welche Durchmesser die Gefäße haben oder wie sie sich verzweigen“, sagt Johannes Paetzold, Doktorand in Menzes Arbeitsgruppe.

    „Wir haben über die letzten Jahre einen Deep-Learning-Algorithmus entwickelt, der darauf spezialisiert ist, in medizinischen Bildern Gefäße zu erkennen“, erklärt Menze. „Diesen haben wir hier erstmals auf ein gesamtes Gehirn angewandt.“ Dabei konnte der Algorithmus zuverlässig zwischen Gefäßen und umliegendem Gewebe unterscheiden, obwohl in dem Fluoreszenz-Bild nicht alle Bereiche gut ausgeleuchtet waren und Lichtreflexe oder andere Fehler die Darstellung verfälschten.

    Hirnkrankheiten verstehen und diagnostizieren

    Mihail Ivilinov Todorov plant, die statistischen Daten für die Erforschung von Gefäßveränderungen bei Schlaganfällen zu nutzen. Björn Menze hingegen möchte die globalen Strukturen des Gefäßsystems untersuchen und zum Beispiel verstehen, welche Rolle anatomisch bedingte Unterschiede bei Hirnerkrankungen spielen.

    Nutzen für den Patienten

    Aber auch im klinischen Alltag könnte die Methode zum Einsatz kommen: „Die kleinen Gewebeproben aus menschlichen Tumoren lassen sich mit unserem System wahrscheinlich exakter untersuchen als bisher möglich“, erklärt Ertürk. Krebsgewebe ist durchzogen von Gefäßen – und die Analyse ihrer Struktur hilft dabei, das Stadium eines Tumors zu bestimmen. „Vielleicht“, so Ertürk weiter, „kann sich das auf die Optimierung der Therapie auswirken.“ Der Biologe will die neue Methode auch anwenden, um eines Tages seine Vision wahrzumachen menschliche Organe im 3D-Drucker herstellen zu lassen. Eine der vielen Voraussetzungen dafür: die genaue Struktur der Gefäße in einem Organ zu kennen.


    Contact for scientific information:

    Dr. Ali Ertürk
    Institut für Schlaganfall- und Demenzforschung (ISD)
    LMU Klinikum München
    Campus Großhadern
    E-Mail: ali.ertuerk@med.uni-muenchen.de
    Web: https://www.isd-research.de/erturk-lab

    Prof. Dr. Björn Menze
    Technische Universität München (TUM)
    Maschinelles Lernen in der Biomedizinischen Bildgebung
    Munich School of BioEngineering und Zentralinstitut für
    Translationale Krebsforschung (TranslaTUM)

    Tel: +49 89 289 10930
    E-Mail: bjoern.menze@tum.de


    Original publication:

    https://www.nature.com/articles/s41592-020-0792-1


    More information:

    https://www.lmu-klinikum.de/aktuelles/pressemitteilungen/automatische-analyse-de...


    Images

    Das Gehirn einer Maus - aufgenommen mit Fluoreszenz-Mikroskopie mittels "Tissue Clearing" - einer Technik, die erstmals die großen und kleinen Gehirngefäße gleichzeitig sichtbar gemacht hat.
    Das Gehirn einer Maus - aufgenommen mit Fluoreszenz-Mikroskopie mittels "Tissue Clearing" - einer Te ...
    Ertürk Lab / Institut für Schlaganfall- und Demenzforschung
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Medicine
    transregional, national
    Research results, Scientific Publications
    German


     

    Das Gehirn einer Maus - aufgenommen mit Fluoreszenz-Mikroskopie mittels "Tissue Clearing" - einer Technik, die erstmals die großen und kleinen Gehirngefäße gleichzeitig sichtbar gemacht hat.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).