idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/19/2020 14:15

Ein Nanolaser aus Gold und Zinkoxid

Dr. Corinna Dahm-Brey Presse & Kommunikation
Carl von Ossietzky-Universität Oldenburg

    Internationales Forschungsteam weist nach, wie neues Nanomaterial Lichtemissionen verstärkt - Publikation in Nature Communications

    Winzige, aus Metallen und Halbleitern zusammengesetzte Partikel könnten in Bauteilen zukünftiger optischer Computer als Lichtquelle dienen, weil sie einfallendes Laserlicht extrem konzentrieren und verstärken. Wie dieser Prozess funktioniert, hat ein Team aus Deutschland und Schweden um die Oldenburger Physiker Prof. Dr. Christoph Lienau und Dr. Jin-Hui Zhong nun erstmals aufgeklärt. Die Studie erscheint in der aktuellen Ausgabe Zeitschrift Nature Communications.

    Die Physikerinnen und Physiker stellten für ihre Studie Nano-Materialien her, die die optischen Eigenschaften von Metallen und Halbleitern kombinieren. Den Ausgangspunkt der Untersuchung bildeten schwammartige Teilchen aus Gold mit einem Durchmesser von einigen hundert Milliardstel Metern (Nanometern) und Poren mit einer Größe von rund zehn Nanometern. Die Materialwissenschaftler Dr. Dong Wang und Prof. Dr. Peter Schaaf von der Technischen Universität Ilmenau stellten diese Metallschwämme her und entwickelten ein Verfahren, um sie mit einer dünnen Schicht aus dem Halbleiter Zinkoxid zu überziehen. Das Material dringt dabei auch in die winzigen Poren ein.

    Die so hergestellten Teilchen sind in der Lage, die Farbe von einfallendem Licht zu verändern. Bestrahlt man sie etwa mit dem Licht eines roten Lasers, geben sie kurzwelligeres, blaues Laserlicht ab. Die abgestrahlte Farbe hängt dabei von den Eigenschaften des Materials ab. „Solche so genannten nichtlinearen optischen Nanomaterialien herzustellen ist eine der großen Herausforderungen der derzeitigen Optik-Forschung“, berichtet Lienau. In zukünftigen optischen Computern, die mit Licht statt mit Elektronen rechnen, könnten derartige Nanopartikel als winzige Lichtquellen dienen. „Man könnte solche Partikel auch als Nanolaser bezeichnen“, ergänzt Zhong, der zusammen mit Dr. Jan Vogelsang von der Universität Lund in Schweden Hauptautor der Studie ist. Mögliche Einsatzorte wären beispielsweise ultraschnelle optische Schalter oder Transistoren.

    Um aufzuklären, wie die Nanomaterialien Licht einer Farbe in eine andere umwandeln, nutzten Teammitglieder um Prof. Dr. Anne L’Huillier und Prof. Dr. Anders Mikkelsen von der Universität Lund ein besonderes mikroskopisches Verfahren, die ultraschnelle Photoemissions-Elektronenmikroskopie. Mit Hilfe von extrem kurzen Lichtblitzen konnten sie nachweisen, dass Licht tatsächlich effizient in den Nanoporen konzentriert wird – eine wichtige Voraussetzung für zukünftige Anwendungen. Prof. Dr. Erich Runge, Physiker von der Technischen Universität Ilmenau, simulierte die Eigenschaften des Materials zusätzlich mit theoretischen Modellen.

    Wie das Team berichtet, bieten aus Metallen und Halbleitern zusammengesetzte Nanopartikel wahrscheinlich neue Möglichkeiten, um die Eigenschaften des abgestrahlten Lichtes nach Wunsch zu justieren. „Unsere Studie liefert grundlegende neue Einblicke dazu, wie hybride Metall-Halbleiter-Nanostrukturen Licht verstärken“, sagt Zhong. Darüber hinaus könnten die Beobachtungen dazu beitragen, Materialien mit noch besseren optischen Eigenschaften zu entwickeln.

    Die Oldenburger Arbeitsgruppe „Ultraschnelle Nano-Optik“ um Prof. Dr. Christoph Lienau ist darauf spezialisiert, Vorgänge in der Nanowelt mit besonders hoher räumlicher und zeitlicher Auflösung zu untersuchen. Dabei gelangen den Physikern schon mehrfach entscheidende Durchbrüche. Erst kürzlich entwickelten sie eine Art Superlinse aus Gold mit zuvor unerreichter optischer Auflösung.


    Contact for scientific information:

    Dr. Jin-Hui Zhong, Tel.: 0441/798-3494, E-Mail: jinhui.zhong@uol.de


    Original publication:

    Jin-Hui Zhong, Jan Vogelsang, Jue-Min Yi, Dong Wang, Lukas Wittenbecher, Sara Mikaelsson, Anke Korte, Abbas Chimeh, Cord L. Arnold, Peter Schaaf, Erich Runge, Anne L’Huillier, Anders Mikkelsen, Christoph Lienau: „Nonlinear plasmon-exciton coupling enhances sum-frequency generation from a hybrid metal/semiconductor nanostructure“, Nature Communications. https://doi.org/10.1038/s41467-020-15232-w


    More information:

    https://uol.de/physik/forschung/uno


    Images

    Die Oldenburger Arbeitsgruppe „Ultraschnelle Nano-Optik“ untersucht Vorgänge in der Nanowelt mit Hilfe von Lasern, die extrem kurze Lichtblitze aussenden. Foto: Universität Oldenburg
    Die Oldenburger Arbeitsgruppe „Ultraschnelle Nano-Optik“ untersucht Vorgänge in der Nanowelt mit Hil ...

    None


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Information technology, Materials sciences, Physics / astronomy
    transregional, national
    Cooperation agreements, Research results
    German


     

    Die Oldenburger Arbeitsgruppe „Ultraschnelle Nano-Optik“ untersucht Vorgänge in der Nanowelt mit Hilfe von Lasern, die extrem kurze Lichtblitze aussenden. Foto: Universität Oldenburg


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).