idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/19/2020 15:19

How molecules self-assemble into superstructures

Dr. Boris Pawlowski Presse, Kommunikation und Marketing
Christian-Albrechts-Universität zu Kiel

    Researchers from Kiel control the size of molecular superstructures on surfaces

    Most technical functional units are built bit by bit according to a well-designed construction plan. The components are sequentially put in place by humans or machines. Life, however, is based on a different principle. It starts bottom-up with molecular self-assembly. The crystallization of sugar or salt are simple examples of self-assembly processes, where almost perfect crystals form from molecules that randomly move in a solution. To better understand the growth of macroscopic structures from molecules, a research team of physicists and chemists of Kiel University has mimicked such processes with custom-made molecules. As recently reported in the journal Angewandte Chemie they fabricated a variety of patterns over a wide range of sizes including the largest structures reported so far.

    The researchers deposited triangular molecules (methyltrioxa¬trian¬gulenium) on gold and silver surfaces and observed their self-assembly into honeycomb superstructures using a scanning tunneling microscope. The structures are comprised of periodic patterns with controllable sizes. “Our largest fabricated patterns contain subunits of 3.000 molecules each, which is approximately 10 times more than previously reported”, says Dr. Manuel Gruber, a physicist from Kiel University. The team also developed a model of the intermolecular forces that drive the self-assembly. “The unique feature of our results is that we can explain, predict and even control their size”, Gruber continues.

    The detailed understanding of the driving forces controlling the size of the patterns holds promises for nanotechnology applications, and in particular for functionalization of surfaces. It may be envisioned to tune various physical properties like electronic, optical or reactivity to gases of a material by controlling the size of the superstructures on its surface.

    The work was supported by the German Research Foundation within the Collaborative Research Centre 677 “Function by Switching” and the Priority Program 1928 “Coordination Networks: Building Blocks for Functional Systems”.

    Photos are available for download:
    https://www.uni-kiel.de/de/pressemitteilungen/2020/075-superstructure-1.jpg
    Caption: Scanning tunneling microscopy (STM) image of a self-assembly of triangular molecules on a silver surface. The repeated pattern (half of a pattern is indicated in yellow) has a size of 45 nanometers. Each dot corresponds to a molecule with a diameter of ~ 1nm.
    Copyright: Manuel Gruber and Torben Jasper-Tönnies

    More information:
    Details, which are only a millionth of a millimetre in size: this is what the priority research area "Kiel Nano, Surface and Interface Science – KiNSIS" at Kiel University has been working on. In the nano-cosmos, different laws prevail than in the macroscopic world - those of quantum physics. Through intensive, interdisciplinary cooperation between physics, chemistry, engineering and life sciences, the priority research area aims to understand the systems in this dimension and to implement the findings in an application-oriented manner. Molecular machines, innovative sensors, bionic materials, quantum computers, advanced therapies and much more could be the result. More information at https://www.kinsis.uni-kiel.de/en


    Contact for scientific information:

    Contact:
    Prof. Dr. Rainer Herges
    Otto Diels Institute of Organic Chemistry
    Phone: +49 (0)431 880 2440
    Mail: rherges@oc.uni-kiel.de
    Web: www.otto-diels-institut.de/en/otto-diels-institute-of-organic-chemistry

    Dr. rer. nat. Manuel Gruber
    Surface Physics
    Phone: +49 (0)431 880 5091
    Mail: gruber@physik.uni-kiel.de
    Web: www.ieap.uni-kiel.de/surface


    Original publication:

    T. Jasper-Tönnies, M. Gruber, S. Ulrich, R. Herges and R. Berndt, Coverage‐Controlled Superstructures of C3 Symmetric Molecules: Honeycomb versus Hexagonal Tiling, Angew. Chem. Int. Ed. https://doi.org/10.1002/ange.202001383
    https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202001383


    More information:

    https://www.uni-kiel.de/en/details/news/075-superstrukturen


    Images

    Scanning tunneling microscopy (STM) image of a self-assembly of triangular molecules on a silver surface.  The repeated pattern (half of a pattern is indicated in yellow) has a size of 45 nanometers.
    Scanning tunneling microscopy (STM) image of a self-assembly of triangular molecules on a silver sur ...
    Copyright: Manuel Gruber and Torben Jasper-Tönnies
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Chemistry, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Scanning tunneling microscopy (STM) image of a self-assembly of triangular molecules on a silver surface. The repeated pattern (half of a pattern is indicated in yellow) has a size of 45 nanometers.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).