idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/02/2020 09:00

Pollenmesssystem der TU Graz analysiert Pollen schnell, günstig und automatisch

Mag. Christoph Pelzl, MSc Kommunikation und Marketing
Technische Universität Graz

    Forschende der TU Graz haben erfolgreich einen kostengünstigen und vollautomatischen Pollensensor-Prototypen getestet und stellen ihr Wissen nun für alle frei zugänglich und verwendbar zur Verfügung.

    Für die Bestäubung vieler Pflanzen sind sie unerlässlich, für Allergikerinnen und Allergiker hingegen ein großes Übel: Pollen. Eine wichtige Anlaufstelle für Betroffene sind dabei Pollenwarndienste, die über Tagesbelastungen und das Allergie-Risiko informieren. Für die derzeit geläufige Datengewinnung werden Pollenfallen eingesetzt, die den Pollengehalt in der Luft kontinuierlich messen. Dafür saugen sie mithilfe eines eingebauten Elektromotors die Umgebungsluft in eine Trommel, in der die in der Luft vorhandenen Pollen an einem Klebestreifen haften bleiben. Fachlich geschulte Personen werten die Pollen dann mikroskopisch aus und klassifizieren sie. Das Prozedere ist allerdings aufwendig und zeitintensiv. Automatisierte Lösungen sind derzeit zu teuer und nur für eine begrenzte Anzahl von Pollenarten geeignet. Die beiden Forschenden des Instituts für Technische Informatik Olga Saukh und Nam Cao haben nun gemeinsam mit einem Team der ETH Zürich einen Prototyp eines Pollenmesssensors entwickelt, der den gesamten Prozess – vom Einfangen der Pollen über das Erfassen bis hin zum Auswerten – dramatisch erleichtern könnte.

    Einfach, kostengünstig, leicht

    Das Pollenmesssystem besteht aus zwei Teilen: Aus einem Messgerät, das Pollenfalle, einen Partikel-Konzentrator und ein digitales Durchlichtmikroskop umfasst, und aus einem Cloud-Service, in dem die mikroskopisch erfassten Pollen-Bilder analysiert werden. Der Prototyp ist besonders leicht (8 kg), kompakt (30 cm x 40 cm x 44 cm), energiesparend (der Stromverbrauch beträgt 6W) und lässt sich kostengünstig realisieren. „Die Materialkosten belaufen sich auf maximal 1000 Euro“, so Olga Saukh. Zum Vergleich: Derzeit verfügbare vollautomatisierte Pollenmessgeräte kosten bis zu 100.000 Euro.

    Die Pollenfalle besitzt sechs Einlässe, die die Pollen aus allen Flugrichtungen erfassen können. „Wir haben uns dabei von modernen Staubsaugertechnologien inspirieren lassen und verwenden zum Sammeln der Pollenproben einen Zyklon, wie er für beutellose Staubsauger genutzt wird, die den aufgesaugten Schmutz in einem Auffangbehälter sammeln“, erklärt Nam Cao.

    Funktionalität des Pollenmesssensors

    Die Pollen landen im Inneren des Gerätes auf einer im Uhrzeigersinn rotierenden Glasplatte, die mit einer dünnen Schicht Glycerin überzogen ist. Das Glycerin erfüllt zwei wesentliche Aufgaben: Zum einen sorgt es dafür, dass die Pollenkörner auf der Glasfläche haften bleiben. Zum anderen verbessert es die Qualität der Bilder, die das Mikroskop an die Cloud schickt. „Glycerin ist transparent, verdunstet nicht und eignet sich aufgrund seiner thermischen Stabilität auch für den Betrieb im Freien“, begründet Olga Saukh die Wahl. Die glyceringetränkten Pollen werden von einer handelsüblichen Papierschneideklinge in einer dünnen Spur auf der Glasplatte konzentriert. Je schmäler diese Spur ist, desto mehr Pollen können mikroskopisch erfasst und anschließend analysiert werden. Danach werden die Pollen automatisch von der Platte abgewischt, so dass das System vollautomatisch über lange Zeiträume arbeiten kann.

    Maschinelle Lernalgorithmen analysieren die Pollen

    In 30 Sekunden werden bis zu 100 mikroskopische Bilder in die Cloud hochgeladen. Eine Objekterkennungssoftware identifiziert die Pollenkörner anhand verschiedener Merkmale. Im Feldversuch erkannte das Pollenerkennungsmodell in 90 Prozent der Fälle die Pollen richtig.

    Um das Modell mithilfe maschineller Lernalgorithmen trainieren und verbessern zu können, haben die Forschenden eine Teilmenge der erfassten Daten manuell annotiert. Nun arbeiten sie daran, die Klassifizierung der Pollen weiter voranzutreiben. „Das ist ein laufender Prozess, wo wir auf die Unterstützung von Pollenfachleuten angewiesen sind“, verweist Olga Saukh auf zwei Open-Source-Plattformen: Der Datensatz ist über Zenodo öffentlich verfügbar. Das Hardwaredesign und der Code werden im Onlinedienst GitHub bereitgestellt.

    Diese Forschung ist im „Field of Expertise“ Information, Communication & Computing verankert, einem von fünf wissenschaftlichen Stärkefeldern der TU Graz.

    Kontakt:
    Olga SAUKH
    bak. Ass.Prof. Dr.rer.nat. MSc
    TU Graz | Institut für Technische Informatik
    Tel.: +43 316 873 6413
    saukh@tugraz.at


    Contact for scientific information:

    Olga SAUKH
    bak. Ass.Prof. Dr.rer.nat. MSc
    TU Graz | Institut für Technische Informatik
    Tel.: +43 316 873 6413
    saukh@tugraz.at


    Original publication:

    Automated Pollen Detection with an Affordable Technology: http://www.olgasaukh.com/paper/cao20automated.pdf


    More information:

    https://www.tugraz.at/institute/iti/home/ (Institut für Technische Informatik der TU Graz)
    https://zenodo.org/record/3572653#.Xlg8dC2ZNp8 (Datensatz)
    https://github.com/osaukh/pollenpub (Hardwaredesign und der Code)
    https://www.tugraz.at/tu-graz/services/news-stories/planet-research/einzelansich... (Porträt von Olga Saukh
    http://www.olgasaukh.com/ (Persönliche Website von Olga Saukh)


    Images

    Nam Cao zeichnet für die Hardware des Pollensensor-Prototypen verantwortlich. Der PhD-Student arbeitet im Rahmen seiner DIssertation am Institut für Technische Informatik der TU Graz an diesem Thema.
    Nam Cao zeichnet für die Hardware des Pollensensor-Prototypen verantwortlich. Der PhD-Student arbeit ...
    © TU Graz – ITI
    None

    Olga Saukh ist Assistenzprofessorin für Embedded Systems an der TU Graz und beschäftigt sich am Institut für Technische Informatik unter anderem mit Algorithm-Engineering.
    Olga Saukh ist Assistenzprofessorin für Embedded Systems an der TU Graz und beschäftigt sich am Inst ...
    © Lunghammer – TU Graz
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Electrical engineering, Environment / ecology, Information technology, Medicine
    transregional, national
    Research projects, Transfer of Science or Research
    German


     

    Nam Cao zeichnet für die Hardware des Pollensensor-Prototypen verantwortlich. Der PhD-Student arbeitet im Rahmen seiner DIssertation am Institut für Technische Informatik der TU Graz an diesem Thema.


    For download

    x

    Olga Saukh ist Assistenzprofessorin für Embedded Systems an der TU Graz und beschäftigt sich am Institut für Technische Informatik unter anderem mit Algorithm-Engineering.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).