idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/02/2020 17:20

Vom Pflanzenrest zum Biotreibstoff

Birte Vierjahn Ressort Presse - Stabsstelle des Rektorats
Universität Duisburg-Essen

    Sägespäne, Stroh oder Getreidespelzen mit nur einem Mikroorganismus möglichst effizient zu nachhaltigem Treibstoff umsetzen: Dazu haben Forscher der Universität Duisburg-Essen (UDE) einen wichtigen Beitrag geleistet. Ihr im Fachmagazin „Nature Communications“ veröffentlichter Ansatz aus Experiment und theoretischer Simulation unterstützt biotechnologisch Ansätze und führt zu einem Verfahren, das vom Industriepartner bereits in der Produktion eingesetzt wird.

    Biokraftstoff entsteht per Definition aus biologischen Quellen, die oft auch als Nahrungsmittel genutzt werden könnten, wie Mais, Zuckerrüben oder Sojabohnen. Lignocellulose hingegen, das die holzigen Anteile in Pflanzen ausmacht, findet sich oft als Abfallprodukt nach der Ernte oder im Sägewerk und ist ebenfalls geeignet.

    Der Weg vom Pflanzenrest zum Biokraftstoff führt allerdings über sogenannte Hexosen oder Pentosen, d.h. Zucker, die aus sechs bzw. fünf Kohlenstoffatomen bestehen wie z.B. Glukose und Xylose. Ein Mikroorganismus kann in der Regel entweder das eine oder das andere umsetzen. Fünffachzucker sind ein Problem für die gängigen biotechnologisch genutzten Mikroben: Selbst wenn diese mit den benötigten Enzymen ausgestattet werden, sammeln sich zum Beispiel Zwischenprodukte an, die den Organismus lahmlegen oder nachfolgende Reaktionen hemmen.

    Ansatz funktioniert im Reagenzglas und im Mikroorganismus

    Daher haben sich Wissenschaftler um die UDE-Forscher Prof. Dr. Bettina Siebers und Dr. Jochen Niemeyer sowie Jacky Snoep (University of Stellenbosch, Südafrika) mit der Reaktionskette aus fünf Enzymen beschäftigt, in der Xylose zu einem wertvollen Zwischenprodukt auf dem Weg zum Biotreibstoff umgewandelt wird: dem Weimberg-Weg. Ihr am Computer entstandenes Modell – jeweils bestätigt, korrigiert und optimiert durch das anschließende Experiment – erlaubt es nun, eine optimale Reaktionskette im Reagenzglas zu designen. Es gibt eine Anleitung für jedes einzelne Enzym vor: Menge, Inkubationszeit oder mögliche benötigte Cofaktoren wie z.B. Metallionen.

    Der Industriepartner Sigma-Aldrich (Merck) setzt ein Enzym des Weimberg-Weges bereits in der Produktion ein. Aber auch anderen Wissenschaftlern steht das Modell über Open-Source-Webplattformen zur Verfügung, denn „faires Datenmanagement ist uns wichtig“, so Siebers.

    Das Projekt wurde von Mercator Research Center Ruhr (MERCUR) sowie vom Bundesministerium für Bildung und Forschung (BMBF) gefördert.

    Redaktion: Birte Vierjahn, Tel. 0203/37 9-2427, birte.vierjahn@uni-due.de


    Contact for scientific information:

    Prof. Dr. Bettina Siebers, Molekulare Enzymtechnologie und Biochemie, Tel. 0201/18 3-7061, bettina.siebers@uni-due.de


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Biology, Energy, Environment / ecology
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).