Unser Gehirn befindet sich im ständigen Selbstgespräch. Diese interne Kommunikation wird fortwährend durch äußere Reize beeinflusst. Dabei müssen aktuelle Sinneswahrnehmungen und laufende Hirnaktivität aufeinander abstimmt werden. Ein Forschungsteam der Neurowissenschaft an der Ruhr-Universität Bochum (RUB) hat herausgefunden, wie der Botenstoff Serotonin diese Prozesse im Gehirn reguliert. Die Erkenntnis, dass bestimmte Serotonin-Rezeptoren die Balance zwischen den verschiedenen Informationsströmen im Gehirn beeinflussen, lässt sich möglicherweise für die zielgerichtete Entwicklung von Medikamenten nutzen. Über die Arbeit berichtet die Fachzeitschrift „Elife“ online am 7. April 2020.
Feinabstimmung von Informationsströmen im Gehirn
„Man kann sich das Problem des Gehirns, interne und externe Information aufeinander abzustimmen, folgendermaßen vorstellen“, erklärt Privatdozent Dr. Dirk Jancke, Leiter der Arbeitsgruppe Optical Imaging am Institut für Neuroinformatik: „Sie sitzen mit Ihrer Familie am Tisch und diskutieren hitzig und lautstark interne Angelegenheiten. Plötzlich klingelt das Telefon. Sie heben ab. Damit gleichzeitig sowohl die Familiendiskussion im Hintergrund ungestört weitergehen kann, als auch Ihr Gespräch mit dem externen Anrufer, müssen die jeweiligen Lautstärken angepasst werden. Bei vergleichbaren Prozessen im Gehirn hilft Serotonin.“
Serotonin ist ein Botenstoff des zentralen Nervensystems, der im Volksmund auch als Glückshormon bezeichnet wird, weil er Aktivitätszustände des Gehirns verändert und sich damit unter anderem auch auf die Gemütslage auswirkt. Die Arbeit der neurowissenschaftlichen Teams der RUB zeigt nun, dass Serotonin darüber hinaus direkt in sensorische Informationsprozesse eingreift.
Licht steuert Ausschüttung von Serotonin im Experiment
Die zugrunde liegenden Mechanismen entdeckten die Forscherinnen und Forscher in Experimenten zur Verarbeitung von visueller Information. Für ihre Untersuchung verwendeten sie genmodifizierte Mäuse, in denen die Ausschüttung von Serotonin durch Licht gesteuert werden kann. Diese Mauslinie hat die Arbeitsgruppe Allgemeine Zoologie und Neurobiologie von Prof. Dr. Stefan Herlitze entwickelt, um mittels implantierter Lichtleitersonden gezielt serotonerge Nervenzellen aktivieren zu können.
In Kombination mit bildgebenden Verfahren konnte das RUB-Team so feststellen, dass ein Anstieg des Serotoninlevels im visuellen Cortex, der Seheindrücke verarbeitet, eine Abschwächung von Aktivitäten aufgrund visueller Reize, und eine Abschwächung von Signalen interner Kommunikation bewirkt.
Dafür sind vornehmlich zwei verschiedene Rezeptortypen verantwortlich. „Das war für uns unerwartet, weil beide Rezeptoren sowohl gemeinsam in bestimmten Nervenzellen auftreten als auch auf unterschiedlichen Zelltypen verteilt sind“, sagt Zohre Azimi, Erstautorin der Studie. Durch die getrennte Regelung interner und externer Signalstärken können verschiedene Informationen im Gehirn aufeinander abgestimmt werden. Ein niedriger Serotoninspiegel, wie er während der nächtlichen Schlafphase auftritt, begünstigt gehirninterne Kommunikation und somit möglicherweise die wichtige Funktion des Träumens. „Fehlfunktionen beim Zusammenspiel dieser Rezeptoren bergen allerdings die Gefahr, dass verschiedene Informationskanäle aus dem Gleichgewicht geraten“, so Jancke. Beispielsweise könnten genetisch bedingte Fehlverteilungen von Serotoninrezeptoren dauerhaft ein Ungleichgewicht zwischen Außenwelt und Innenwelt erzeugen, ähnlich wie man es bei Krankheitsbildern wie Depression oder Autismus beobachten kann.
Wirkweise besser verstehen
Die Forschungsgruppe hofft, dass ihre Ergebnisse dazu beitragen, die Wirkweise von Serotonin im Gehirn besser zu verstehen und damit die Forschung an Medikamenten zu fördern, die durch spezifische Rezeptorwirkung Patienten mit serotoninbedingten psychischen Erkrankungen helfen.
Förderung
Die Studie wurde unter anderem durch Mittel des Sonderforschungsbereiches (SFB) 874 unterstützt, den die Deutsche Forschungsgemeinschaft seit 2010 an der RUB fördert. Der SFB „Integration und Repräsentation sensorischer Prozesse“ untersucht, wie sensorische Signale neuronale Karten generieren und daraus komplexes Verhalten und Gedächtnisbildung resultiert.
Originalveröffentlichung
Zohre Azimi, Ruxandra Barzan, Katharina Spoida, Tatjana Surdin, Patric Wollenweber, Melanie D. Mark, Stefan Herlitze, Dirk Jancke: Separable gain control of ongoing and evoked activity in the visual cortex by serotonergic input, in: E-Life, 2020, DOI: 10.7554/eLife.53552, https://doi.org/10.7554/eLife.53552
Pressekontakt
Privatdozent Dr. Dirk Jancke
Optical Imaging Lab
Institut für Neuroinformatik
Ruhr-Universität Bochum
Tel: +49 234 32 27845
E-Mail: dirk.jancke@.rub.de
Privatdozent Dr. Dirk Jancke
Optical Imaging Lab
Institut für Neuroinformatik
Ruhr-Universität Bochum
Tel: +49 234 32 27845
E-Mail: dirk.jancke@.rub.de
Zohre Azimi, Ruxandra Barzan, Katharina Spoida, Tatjana Surdin, Patric Wollenweber, Melanie D. Mark, Stefan Herlitze, Dirk Jancke: Separable gain control of ongoing and evoked activity in the visual cortex by serotonergic input, in: E-Life, 2020, DOI: 10.7554/eLife.53552, https://doi.org/10.7554/eLife.53552
Criteria of this press release:
Journalists
Biology, Medicine, Psychology
transregional, national
Research results
German
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).