idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/15/2020 10:31

Quantenphysik – oberflächlich betrachtet

Christina Glaser Referat II/2 - Media Relations & Communications
Universität Regensburg

    Regensburger Physiker untersuchen nanometergroße konische Drähte, basierend auf neuartigen Materialien – und entdecken dabei eine Reihe interessanter Leitfähigkeitsphänomene an deren Oberflächen

    Weltweit werden in der Physik Festkörper einer neuen Materialklasse erforscht, die als topologische Isolatoren bezeichnet werden. Während das Innere eines topologischen Isolators isolierend ist, befinden sich auf dessen Oberfläche leitende Elektronen mit außergewöhnlichen Eigenschaften. Diese Elektronen verhalten sich in vielerlei Hinsicht wie ultrarelativistische Teilchen, d.h. wie Teilchen, die sich nahezu mit Lichtgeschwindigkeit bewegen. Das daraus resultierende bemerkenswerte Verhalten der Elektronen berührt nicht nur fundamentale Aspekte der Physik, die im Regensburger Sonderforschungsbereich „Emergent Relativistic Effects in Condensed Matter“ erforscht werden, sondern birgt Potential für zahlreiche Anwendungen, beispielsweise in der Elektronik und im Bereich des Quantencomputing.

    Eine Gruppe von theoretischen Physikern der Universität Regensburg um Prof. Dr. Klaus Richter befasste sich nun mit den besonderen Leitfähigkeitseigenschaften von Nanodrähten mit konischer Geometrie, die aus topologischen Isolatoren bestehen. Ihre Ergebnisse wurden mit dem Prädikat Editors‘ Suggestion versehen im Journal Physical Review Letters veröffentlicht. Unter dem Einfluss von Magnetfeldern zeigen derartige kegelförmige Nanodrähte ihr volles Potential: In Magnetfeldern senkrecht zur Drahtachse leiten sie den Strom entlang der Oberfläche verlustfrei, während sie sich in starken koaxialen Magnetfeldern wie künstliche Atome verhalten, in denen die Elektronen gebunden sind und nur bestimmte diskrete Energieniveaus einnehmen können. Letzteres führt zu einer durch Quanteneffekte bestimmten Leitfähigkeit, die – im Widerspruch zum Ohmschen Gesetz – bei bestimmten charakteristischen Energien maximal wird, wie in untenstehender Abbildung gezeigt.

    Konische Nanodrähte bilden den Grundbaustein für komplexere gekrümmte Drähte, an denen die Regensburger Wissenschaftler aktuell forschen. Durch ihre enorm vielfältigen Leitfähigkeitseigenschaften könnten Nanodrähte aus topologischen Isolatoren einen wichtigen Beitrag zur Forschung in der Grundlagenphysik liefern und zu zukünftigen technologischen Anwendungen führen.


    Contact for scientific information:

    Prof. Dr. Klaus Richter
    Institut für Theoretische Physik
    Universität Regensburg
    Telefon: 0941 943-2029
    E-Mail: klaus.richter@ur.de


    Original publication:

    Raphael Kozlovsky, Ansgar Graf, Denis Kochan, Klaus Richter, and Cosimo Gorini, „Magnetoconductance, Quantum Hall Effect, and Coulomb Blockade in Topological Insulator Nanocones”, Physical Review Letters (2020). DOI: 10.1103/PhysRevLett.124.126804


    More information:

    https://doi.org/10.1103/PhysRevLett.124.126804


    Images

    Skizze eines konischen Nanodrahtes im koaxialen Magnetfeld, sowie dessen elektrische Leitfähigkeit (vertikale Achse) als Funktion der Energie der Elektronen (horizontale Achse).
    Skizze eines konischen Nanodrahtes im koaxialen Magnetfeld, sowie dessen elektrische Leitfähigkeit ( ...
    Raphael Kozlovsky
    None


    Criteria of this press release:
    Journalists
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Skizze eines konischen Nanodrahtes im koaxialen Magnetfeld, sowie dessen elektrische Leitfähigkeit (vertikale Achse) als Funktion der Energie der Elektronen (horizontale Achse).


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).