The fundamental laws of physics are based on symmetries that, among other things, determine the interactions between charged particles. Using ultracold atoms, researchers at Heidelberg University have experimentally constructed the symmetries of quantum electrodynamics. They hope to gain new insights for implementing future quantum technologies that can simulate complex physical phenomena. The results of the study were published in the journal “Science”.
Quantum Electrodynamics Experiment
Researchers see application in future quantum technologies
The fundamental laws of physics are based on symmetries that, among other things, determine the interactions between charged particles. Using ultracold atoms, researchers at Heidelberg University have experimentally constructed the symmetries of quantum electrodynamics. They hope to gain new insights for implementing future quantum technologies that can simulate complex physical phenomena. The results of the study were published in the journal “Science”.
The theory of quantum electrodynamics deals with the electromagnetic interaction between electrons and light particles. It is based on so-called U(1) symmetry, which for instance specifies the movement of particles. With their experiments, the Heidelberg physicists, under the direction of Junior Professor Dr Fred Jendrzejewski, seek to advance the efficient investigation of this complex physical theory. They recently succeeded in experimentally realising one elementary building block. “We see the results of our research as a major step towards a platform built from a chain of properly connected building blocks for a large-scale implementation of quantum electrodynamics in ultracold atoms,” explains Prof. Jendrzejewski, who directs an Emmy Noether group at Heidelberg University's Kirchhoff Institute for Physics.
According to the researchers, one possible application would be developing large-scale quantum devices to simulate complex physical phenomena that cannot be studied with particle accelerators. The elementary building block developed for this study could also benefit the investigation of problems in materials research, such as in strongly interacting systems that are difficult to calculate.
The research by the Heidelberg scientists was conducted as part of the “Isolated quantum systems and universality under extreme conditions” (ISOQUANT) Collaborative Research Centre funded by the German Research Foundation.
Contact:
Communications and Marketing
Press Office
Phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de
Junior Professor Dr Fred Jendrzejewski
Kirchhoff Institute for Physics
Phone +49 6221 54-5182
fnj@kip.uni-heidelberg.de
A. Mil, T. V. Zache, A. Hegde, A. Xia, R. P. Bhatt, M. K. Oberthaler, Ph. Hauke, J. Berges, F. Jendrzejewski: A scalable realization of local U(1) gauge invariance in cold atomic mixtures; Science 2020; doi: 10.1126/science.aaz5312
http://www.kip.uni-heidelberg.de/user/fnj/
Artistic visualisation: Symmetries constrain the motion of ultracold atoms in the lab.
Illustration: Cellule
None
Criteria of this press release:
Journalists, Scientists and scholars
Materials sciences, Physics / astronomy
transregional, national
Research results, Scientific Publications
English
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).