idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
04/27/2020 13:26

New study reveals insights into the global spread of the emerging multidrug-resistant human pathogen S. maltophilia

Britta Weller Presse- und Öffentlichkeitsarbeit
Forschungszentrum Borstel - Leibniz Lungenzentrum

    An international consortium led by the Research Center Borstel, Leibniz Lung Center, describes for the first time the population structure and spread at scale of opportunistic multidrug-resistant pathogens of the Stenotrophomonas maltophilia complex. The study, now published in Nature Communications, provides a systematic understanding of the global phylogeny of S. maltophilia strains and enables efficient surveillance based on a standardized genomic classification system.

    Bacteria of the S. maltophilia complex can be found ubiquitously in diverse natural and human-associated ecosystems. Recently, they emerged as opportunistic pathogens causing hospital-acquired drug-resistant infections, mainly in patients with immunosuppression or pre-existing inflammatory lung diseases such as cystic fibrosis. While almost any organ can be affected, respiratory tract infections, bacteraemia, or catheter-related bloodstream infections are most common. Alarmingly, treatment options are very limited by an inherent resistance of S. maltophilia strains to a large number of antibiotics. Considering the increasing importance and severe clinical outcomes caused by this emerging pathogen, insights into S. maltophilia virulence factors, and local and global spread are urgently needed.

    "Recent reports indicate the worldwide spread of clearly defined and very successful subgroups of different pathogens in the hospital setting. However, little information is available for S. maltophilia, as infections are not routinely reported and systematically analyzed" says Prof. Stefan Niemann from the Research Center Borstel, who led the consortium.

    The researchers from a large bioinformatics company and research institutions from eight countries first established a standardized genotyping approach that enables the comprehensive analysis of the diverse genomes of S. maltophilia strains by translating the genome sequences into a unique and strain-specific barcode (whole-genome Multilocus Sequence Types). In the next step, they performed a large-scale genome-based analysis of a worldwide collection of 1305 S. maltophilia isolates from 22 countries to define the worldwide population structure and detect the global and local spread of particular subtypes.

    One major finding was that the S. maltophilia complex is divided into 23 lineages with distinct occurrences e.g. in the environment or human-associated. Strains of one particular lineage termed “Sm6” occurred globally, had the highest rate of human-associated strains and featured higher proportions of key virulence and resistance genes. “This suggests that a dedicated gene repertoire can fuel the spread of particular S. maltophilia subtypes in the hospital setting, i.e. under antimicrobial treatment” says Matthias Gröschel, first author of the study from the Harvard Medical School.

    Strikingly, transmission analysis was able to identify several potential outbreak events of genetically closely related strains isolated within days or weeks in the same hospitals.
    “In line with similar reports for other bacterial diseases, our results point towards systematic prospective molecular surveillance of S. maltophilia and other pathogens in the hospital setting as critical tool to define transmission pathways and improve infection control” adds Thomas Kohl from the Research Center Borstel (senior author).

    To address these questions, the researchers are currently initiating larger research initiatives using genome-based tools to deepen our understanding of this emerging pathogen, in particular with regard to potential modes of pathogen transmission in the hospital setting.


    Contact for scientific information:

    Prof. Dr. Stefan Niemann
    Molecular Mycobacteriology
    Parkallee 1
    Forschungszentrum Borstel
    Borstel, Germany
    sniemann@fz-borstel.de


    Original publication:

    Gröschel, M.I., Meehan, C.J., Barilar, I. et al. The phylogenetic landscape and nosocomial spread of the multidrug-resistant opportunist Stenotrophomonas maltophilia. Nat Commun 11, 2044 (2020). https://doi.org/10.1038/s41467-020-15123-0


    Images

    Scanning electron microscope picture of Stenotrophomonas maltophilia
    Scanning electron microscope picture of Stenotrophomonas maltophilia
    E. Abda & I. Alio/ Mikrobiologie, Universität Hamburg
    None


    Criteria of this press release:
    Journalists, Scientists and scholars
    Biology, Chemistry, Environment / ecology, Medicine
    transregional, national
    Research results, Scientific Publications
    English


     

    Scanning electron microscope picture of Stenotrophomonas maltophilia


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).