idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/04/2020 13:25

Bayreuther Hochdruck-Forscher entdecken Stickstoffverbindungen mit überraschenden Strukturen

Christian Wißler Pressestelle
Universität Bayreuth

    Nitride sind Stickstoffverbindungen mit technologisch hochattraktiven Eigenschaften. Sie haben daher ein breites Anwendungspotenzial in der Mikroelektronik, der Optoelektronik und als Keramikwerkstoffe. Forscher der Universität Bayreuth haben jetzt bei Hochdruck-Experimenten ungewöhnliche Nitride entdeckt. Stickstoff- und Metallatome verbinden sich unter sehr hohen Drücken zu porösen Kristallstrukturen mit Kanälen, in die sich Stickstoff-Moleküle einlagern. Die in der Zeitschrift „Angewandte Chemie International Edition” veröffentlichten Erkenntnisse bieten wertvolle Ansatzpunkte für das Design und die Synthese neuer High-Tech-Materialien.

    Scheinbar paradox: Hochdruck erzeugt Hohlräume

    Es ist eine alltägliche Erfahrung: Je kräftiger der Druck ist, den man von allen Seiten auf einen Gegenstand ausübt, desto mehr wird er zusammengepresst. Das Volumen verringert sich und Hohlräume im Inneren verschwinden. Doch genau dieser Erfahrung widersprechen die neuen Hochdruck-Experimente an der Universität Bayreuth. Bei einem Kompressionsdruck von rund einer Million Atmosphären, wie er rund 2.500 Kilometer unterhalb der Erdoberfläche herrscht, entstehen aus Stickstoff-Atomen und den Atomen eines Metalls poröse Gerüststrukturen. Dabei bauen Stickstoff-Atomen beispielsweise zickzackförmige Ketten auf. In die Hohlräume der neuen Kristalle dringen Stickstoff-Moleküle (N₂) ein. Bei den in den Experimenten verwendeten Metallen handelt es sich um Hafnium (Hf), Wolfram (W) und Osmium (Os). Sie zählen aufgrund ihrer Positionen im Periodensystem der Elemente zur Klasse der Übergangsmetalle.

    Hochdruck macht Stickstoff bindungsfreudig

    „Unter normalen Drücken und Temperaturen, wie wir sie auf der Erde kennen, sind Stickstoffmoleküle sehr bindungsunwillig. Deshalb ist es faszinierend zu beobachten, wie sich unter hohen Drücken das Bindungsverhalten des Stickstoffs radikal ändert. Es entstehen komplexe Gerüststrukturen, die unterschiedliche Arten chemischer Bindungen enthalten. In jedem Fall sind diese Strukturen porös – was sehr ungewöhnlich ist, wenn man beispielsweise bedenkt, wie sich Graphitschichten unter Hochdruck in kompakte und sehr harte Diamanten verwandeln“, erklärt Prof. Dr. Natalia Dubrovinskaia vom Labor für Kristallographie der Universität Bayreuth, die an der neuen Studie maßgeblich beteiligt war.

    Wie die komplexe Gerüststruktur aussieht, die im Einzelfall entsteht, hängt entscheidend von der Wahl des Übergangsmetalls ab. Dies bedeutet im Prinzip, dass die Synthese der Nitride gezielt gesteuert werden kann – zumindest unter hohen Drücken, wie sie im Labor erzeugt werden können.

    „Im Hinblick auf die wachsende technologische Bedeutung von Nitriden, beispielsweise für die Elektronik oder Energiespeicherung, bietet unsere neue Studie zahlreiche Anregungen für die Entwicklung neuer High-Tech-Materialien“, sagt Dr. Maxim Bykov, Erstautor der Studie.

    Internationale Zusammenarbeit

    Die neuen Forschungsergebnisse sind aus einer engen internationalen Forschungskooperation hervorgegangen: Zusammen mit Hochdruck-Forschern aus Bayreuth waren Arbeitsgruppen der University of Chicago, der Carnegie Institution of Washington und der Howard University in den USA, der National University of Science and Technology MISiS in Moskau/Russland, der Universität Linköping in Schweden, der European Synchrotron Radiation Facility in Grenoble/Frankreich (ESRF) sowie des Deutschen Elektronen-Synchrotron (DESY) in Hamburg beteiligt.

    Forschungsförderung

    Die Forschungsarbeiten an der Universität Bayreuth wurden von der Deutschen Forschungsgemeinschaft (DFG) und dem Bundesministerium für Bildung und Forschung (BMBF) gefördert.


    Contact for scientific information:

    Prof. Dr. Natalia Dubrovinskaia
    Labor für Kristallographie
    Universität Bayreuth
    Telefon.: +49 (0)921 55-3880
    E-Mail: natalia.dubrovinskaia@uni-bayreuth.de


    Original publication:

    Maxim Bykov et al.: High‐pressure synthesis of metal‐inorganic frameworks Hf4N20·N2, WN8·N2, and Os5N28·3N2 with polymeric nitrogen linkers. Advanced Materials International Edition (2020), doi: https://doi.org/10.1002/ange.202002487


    Images

    Metallische anorganische Gerüststrukturen mit Osmium, Hafnium und Wolfram (Os₅N₂₈, Hf₄N₂₀, WN₈, v.l.). Blau: Stickstoff-Atome, gelb: Metall-Atome, rot: Stickstoff-Moleküle in den Zwischenräumen.
    Metallische anorganische Gerüststrukturen mit Osmium, Hafnium und Wolfram (Os₅N₂₈, Hf₄N₂₀, WN₈, v.l. ...
    Grafiken: Maxim Bykov.
    None

    Prof. Dr. Natalia Dubrovinskaia, Universität Bayreuth.
    Prof. Dr. Natalia Dubrovinskaia, Universität Bayreuth.
    Foto: UBT.
    None


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Chemistry, Materials sciences
    transregional, national
    Research results, Scientific Publications
    German


     

    Metallische anorganische Gerüststrukturen mit Osmium, Hafnium und Wolfram (Os₅N₂₈, Hf₄N₂₀, WN₈, v.l.). Blau: Stickstoff-Atome, gelb: Metall-Atome, rot: Stickstoff-Moleküle in den Zwischenräumen.


    For download

    x

    Prof. Dr. Natalia Dubrovinskaia, Universität Bayreuth.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).