idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/07/2020 08:49

Langlebiges pionisches Helium: exotische Materie erstmals experimentell nachgewiesen

Katharina Jarrah Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik

    Exotische Atome, in denen Elektronen durch andere subatomare Teilchen gleicher Ladung ersetzt werden, ermöglichen tiefe Einblicke in die Quantenwelt. Nach acht Jahren gelang Forschern von MPQ und PSI in CERN dazu ein schwieriges Experiment. Sie schufen ein künstliches Atom, das sogenannte pionische Helium. Das normalerweise sehr kurzlebige Pion konnte darin tausend mal länger überleben als sonst in Materie. Dadurch kann das Pion jetzt viel präziser untersucht werden, als jemals zuvor.

    Exotische Atome, in denen Elektronen durch andere subatomare Teilchen gleicher Ladung ersetzt werden, ermöglichen tiefe Einblicke in die Quantenwelt. Nach acht Jahren gelang einer Gruppe um Masaki Hori, leitender Physiker am Max-Planck-Institut für Quantenoptik in Garching, nun ein äußerst schwieriges Experiment: Sie ersetzte in einem Heliumatom ein Elektron durch ein Pion in einem besonderen Quantenzustand und wiesen die Existenz dieses langlebigen „pionischen Heliums“ nach. Dadurch lebte das kurzlebige Pion tausend Mal länger als sonst in Materie. Pionen gehören zu einer wichtigen Teilchenfamilie, die auch entscheidend für den Zusammenhalt oder Zerfall von Atomkernen ist. Im pionischen Heliumatom lassen sie sich nun mit Hilfe der Laserspektroskopie extrem genau untersuchen. Die Ergebnisse erscheinen heute im Fachblatt Nature.

    Acht Jahre lang hat Maskai Horis Gruppe an dem herausfordernden Pionierexperiment gearbeitet, das das Potenzial hat, ein neues Forschungsfeld zu gründen. Es war ein wissenschaftlicher Marathonlauf, der durch eine internationale Kooperation zwischen dem Max-Planck-Institut für Quantenoptik, dem Paul-Scherrer-Institut (PSI) in der Schweiz und CERN, dem europäischen Teilchenforschungslaboratorium, möglich wurde.

    Dem Team gelang es, erstmals die Existenz von längerlebigen pionischen Heliumatomen nachzuweisen, die gewissermaßen mit Pionen „geimpft“ sind. Das Pion ersetzt eines der beiden Elektronen des Heliumatoms. „Es ist eine Art chemischer Reaktion, die ganz automatisch passiert“, erklärt Hori. Dieses exotische Atom war bereits 1964 theoretisch vorhergesagt worden, nachdem damalige Experimente Hinweise auf dessen Existenz zeigten. Es galt aber als extrem schwierig, diese Vorhersage experimentell zu beweisen. Das ohnehin schon extrem kurzlebige Pion zerfällt im Atom normalerweise noch schneller als sonst. Doch im pionischen Helium kann es gewissermaßen konserviert werden und lebt dadurch tausend Mal länger als sonst in anderen Atomen.

    Der „rauchende Colt“

    Die Herausforderung für das Team war, die tatsächliche Existenz eines solchen pionischen Heliums im Tank ihres Experiments, der mit extrem kaltem, suprafluidem Helium gefüllt war, nachzuweisen. Im Heliumatom verhält sich das Pion wie ein schweres Elektron. Es kann nur zwischen diskreten Quantenzuständen springen, wie zwischen Leiterstufen. Für den Nachweis musste die Gruppe einen langlebigen Zustand und einen speziellen Quantensprung finden, den sie mit einem Laser anregen und so das Pion in den Kern des Heliumatoms befördern konnte. Dieser Vorgang zerstört den Kern des Atoms, als Nachweis des Pions dienen dann die Trümmerteile des Atomkerns als eine Art „rauchender Colt“ (Abbildung). Allerdings konnten die Theoretiker nicht genau vorhersagen, bei welcher Lichtwellenlänge dieser entscheidende Quantensprung passieren würde. Also musste das Team drei komplexe Lasersysteme nacheinander aufbauen, bis es erfolgreich war.

    „Dieser Erfolg macht Pionen erstmals den Methoden der Quantenoptik zugänglich“, freut sich Hori. Dazu gehört die Laserspektroskopie, eines der präzisesten Werkzeuge der Physik überhaupt. Das Experiment eröffnet also die Möglichkeit, das Pion in diesen Quantenzuständen wesentlich genauer zu untersuchen, als dies bislang möglich war.

    Neues Fenster in den Quantenkosmos

    Das Pion gehören zur Teilchenfamilie der sogenannten Mesonen. Diese vermitteln auch die Kernkraft zwischen den Bausteinen der Atomkerne, den Neutronen und Protonen. Obwohl die elektrisch gleich geladenen Protonen sich heftig gegenseitig abstoßen, klammert die stärkere Kernkraft sie zum Atomkern zusammen. Ohne diese Kraft würde also unsere Welt nicht existieren. Von den Protonen und Neutronen, die jeweils aus drei Quarks aufgebaut sind, unterscheiden sich die Mesonen zudem grundsätzlich, denn sie bestehen aus zwei Quarks.

    Das Experiment nutzte die stärkste Pionenquelle der Welt, die am PSI steht. Da das Risiko eines Scheiterns sehr hoch war und es auch mehrere Fehlschläge gab, benötigte die Gruppe eine langfristige Unterstützung durch das PSI und die Max-Planck-Gesellschaft (MPG). Das PSI stellte auch von anderen Forschungsgruppen begehrte Strahlzeit mit Pionen zur Verfügung, und die MPG sorgte für ein Umfeld, das langfristig orientierte Forschung ermöglicht. Finanziert wurde das Projekt vom Europäischen Forschungsrat durch einen ERC-Grant.

    Dr. Hori hofft nun, dass er mit dem gelungenen Experiment ein neues Fenster in den Quantenkosmos der Teilchen und Kräfte öffnen konnte.


    Contact for scientific information:

    Dr. Masaki Hori (Forschungsgruppenleiter/Research Leader)
    Max Planck Institute for Quantum Optics
    Hans-Kopfermann-Str. 1
    85748 Garching
    Germany
    Phone: +49 89 3 29 05 - 268
    E-Mail: masaki.hori@mpq.mpg.de


    Original publication:

    Hori, M., Aghai-Khozani, H., Sótér, A. et al. Laser spectroscopy of pionic helium atoms. Nature 581, 37–41 (2020).

    https://doi.org/10.1038/s41586-020-2240-x


    More information:

    https://www.mpq.mpg.de/2020-05-pionic-helium
    https://www.nature.com/articles/s41586-020-2240-x


    Images

    Künstlerische Darstellung eines pionischen Heliumatoms angeregt von einem Laserstrahl.
    Künstlerische Darstellung eines pionischen Heliumatoms angeregt von einem Laserstrahl.
    Thorsten Naeser, Dennis Luck, MPQ
    None

    Von links nach rechts: Ein Pion trifft auf ein Heliumatom und ersetzt eines seiner beiden Elektronen. Das Ergebnis ist ein pionisches Heliumatom, in dem das Pion 1000mal länger lebt als sonst.
    Von links nach rechts: Ein Pion trifft auf ein Heliumatom und ersetzt eines seiner beiden Elektronen ...
    Masaki Hori, MPQ
    None


    Criteria of this press release:
    Journalists
    Physics / astronomy
    transregional, national
    Research results
    German


     

    Künstlerische Darstellung eines pionischen Heliumatoms angeregt von einem Laserstrahl.


    For download

    x

    Von links nach rechts: Ein Pion trifft auf ein Heliumatom und ersetzt eines seiner beiden Elektronen. Das Ergebnis ist ein pionisches Heliumatom, in dem das Pion 1000mal länger lebt als sonst.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).