idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/11/2020 12:37

Future information technologies: 3D Quantum Spin Liquid revealed

Dr. Ina Helms Kommunikation
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

    Quantum Spin Liquids are candidates for potential use in future information technologies. So far, Quantum Spin Liquids have usually only been found in one or two dimensional magnetic systems only. Now an international team led by HZB scientists has investigated crystals of PbCuTe2O6 with neutron experiments at ISIS, NIST and ILL. They found spin liquid behaviour in 3D, due to a so called hyper hyperkagome lattice. The experimental data fit extremely well to theoretical simulations also done at HZB.

    IT devices today are based on electronic processes in semiconductors. The next real breakthrough could be to exploit other quantum phenomena, for example interactions between tiny magnetic moments in the material, the so-called spins. So-called quantum-spin liquid materials could be candidates for such new technologies. They differ significantly from conventional magnetic materials because quantum fluctuations dominate the magnetic interactions: Due to geometric constraints in the crystal lattice, spins cannot all "freeze" together in a ground state - they are forced to fluctuate, even at temperatures close to absolute zero.

    Quantum spin liquids: a rare phenomenon

    Quantum spin liquids are rare and have so far been found mainly in two-dimensional magnetic systems. Three-dimensional isotropic spin liquids are mostly sought in materials where the magnetic ions form pyrochlore or hyperkagome lattices. An international team led by HZB physicist Prof. Bella Lake has now investigated samples of PbCuTe2O6, which has a three-dimensional lattice called hyper-hyperkagome lattice.

    Magnetic interactions simulated

    HZB physicist Prof. Johannes Reuther calculated the behaviour of such a three-dimensional hyper-hyperkagome lattice with four magnetic interactions and showed that the system exhibits quantum-spin liquid behaviour with a specific magnetic energy spectrum.

    Experiments at neutron sources find 3D quantum spin liquid

    With neutron experiments at ISIS, UK, ILL, France and NIST, USA the team was able to prove the very subtle signals of this predicted behaviour. "We were surprised how well our data fit into the calculations. This gives us hope that we can really understand what happens in these systems," explains first author Dr. Shravani Chillal, HZB.

    Picture: One of the four magnetic interactions leads to a three-dimensional network of corner-sharing triangles also known as the hyperkagome lattice. Combined the magnetic interactions form a hyper-hyper-Kagome lattice which allows the 3D quantum spin liquid behavior.


    Contact for scientific information:

    Dr. Shravani Chillal
    E-Mail: shravani.chillal@helmholtz-berlin.de

    Prof. Dr. Bella Lake
    E-Mail: bella.lake@helmholtz-berlin.de


    Original publication:

    DOI: 10.1038/s41467-020-15594-1
    http://dx.doi.org/10.1038/s41467-020-15594-1


    More information:

    https://www.helmholtz-berlin.de/pubbin/news_seite?nid=21301;sprache=en;seitenid=...


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars
    Energy, Information technology, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).