idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
05/13/2020 08:54

Noble Metal Aerogels Enabled by Freezing:Multi-Scale Structured Materials for Electrocatalysis and Photoelectrocatalysis

Kim-Astrid Magister Pressestelle
Technische Universität Dresden

    TU Dresden chemists developed a freeze-thaw method, capable of synthesising various noble metal aerogels (NMAs) with clean surfaces and multiscale structure. In virtue of their hierarchical structures and unique optical properties, outstanding performance for electro-oxidation of ethanol is found. The research provides new ideas for designing various gel or foam materials for high-performance electrocatalysis and photoelectrocatalysis.

    As a new class of porous materials, noble metal aerogels (NMAs) have drawn tremendous attention because of their combined features including self-supported architectures, high surface areas, and numerous optically and catalytically active sites, enabling their impressive performance in diverse fields. However, current fabrication methods suffer from long fabrication periods, unavoidable impurities, and uncontrolled multiscale structures, discouraging their fundamental and application-orientated studies.

    Dr. Ran Du from China has been an Alexander von Humboldt research fellow at TU Dresden since 2017. In collaboration with the Dresden chemists Dr. Jan-Ole Joswig and Professor Alexander Eychmüller, they recently crafted a novel freeze-thaw method capable of acquiring various multi-scale structured noble metal aerogels as superior photoelectrocatalysts for electro-oxidation of ethanol, promoting the application for fuel cells. Their work has now been published as cover story in the prestigious journal Angewandte Chemie International Edition.

    Ran Du and his team have found unusual self-healing properties of noble metal gels in their previous works. Inspired by this fact, a freeze-thaw method was developed as an additive-free approach to directly destabilise various dilute metal nanoparticle solutions (concentration of 0.20.5 mM). Upon freezing, large aggregates were generated due to the intensified salting-out effects incurred by the dramatically raised local solute concentration; meanwhile, they were shaped at micrometer scale by in situ formed ice crystals. After thawing, aggregates settled down and assembled to monolithic hydrogels as a result of their self-healing properties. Purified and dried, clean hydrogels and the corresponding aerogels were obtained.

    Due to the hierarchically porous structures, the cleanliness, and the combined catalytic/optical properties, the resulting gold-palladium (Au-Pd) aerogels were found to display impressive light-driven photoelectrocatalytic performance, delivering a current density of up to 6.5 times higher than that of commercial palladium-on-carbon (Pd/C) for the ethanol oxidation reaction.

    “The current work provides a new idea to create clean and hierarchically structured gel materials directly from dilute precursor solutions, and it should adapt to various material systems for enhanced application performance for catalysis and beyond”, assumes chemist Ran Du.

    Media Enquiries:
    Nicole Gierig
    Public Relations Advisor
    School of Science
    TU Dresden
    Email: Nicole.gierig@tu-dresden.de


    Original publication:

    Du, R., Joswig, J.-O., Hübner, R., Zhou, L., Wei, W., Hu, Y., Eychmüller, A. (2020). Freeze-Thaw-Promoted Fabrication of Clean and Hierarchically-Structured Noble Metal Gels for Electrocatalysis and Photoelectrocatalysis. Angew. Chem. Int. Ed., DOI: 10.1002/anie.201916484.


    Images

    Criteria of this press release:
    Journalists
    Chemistry
    transregional, national
    Research results, Scientific Publications
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).