Lysosome to mitochondria communication
As people get older, they often feel less energetic, mobile or active. This may be due in part to a decline in mitochondria, the tiny powerhouses inside of our cells, which provide energy and regulate metabolism. In fact, mitochondria decline with age not only in humans, but in many species. Why they do so is not well understood. Scientists at the Max Planck Institute for Biology of Ageing in Cologne set out to understand how mitochondrial function is diminished with age and to find factors that prevent this process. They found that communication between mitochondria and other parts of the cell plays a key role.
For their studies, the scientists used the simple roundworm, Caenorhabditis elegans, an important model system for ageing research. Over half the genes of this animal are similar to those found in humans, and their mitochondria also decline with age. From their research, the scientists found a nuclear protein called NFYB-1 that switches on and off genes affecting mitochondrial activity, and which itself goes down during ageing. In mutant worms lacking this protein, mitochondria don’t work as well and worms don’t live as long.
Unexpectedly, the scientists discovered that NFYB-1 steers the activity of mitochondria through another part of the cell called the lysosome, a place where basic molecules are broken down and recycled as nutrients. “We think the lysosome talks with the mitochondria through special fats called cardiolipins and ceramides, which are essential to mitochondrial activity,” says Max Planck Director, Adam Antebi, whose laboratory spearheaded the study. Remarkably, simply feeding the NFYB-1 mutant worms cardiolipin restored mitochondrial function and worm health in these strains. Because cardiolipins and ceramides are also essential for human mitochondria, this may mean human health and ageing can be improved by understanding on how such molecules facilitate communication between different parts of the cell. This work has been recently published in Nature Metabolism.
Corresponding Author: Adam Antebi
E-Mail: Adam.Antebi@age.mpg.de
Scientific Coordinator: Gabriella Lundkvist
E-Mail: Gabriella.Lundkvist@age.mpg.de
Tel: +49 (0)221 379 70 302
Rebecca George Tharyan, Andrea Annibal, Isabelle Schiffer, Raymond Laboy, Ilian Atanassov, Anna Luise Weber, Birgit Gerisch and Adam Antebi
NFYB-1 regulates mitochondrial function and longevity via lysosomal prosaposin
Nature Metabolism, May 18 2020
https://www.nature.com/articles/s42255-020-0200-2
https://www.age.mpg.de/
https://www.age.mpg.de/science/research-laboratories/antebi/
https://www.nature.com/articles/s42255-020-0200-2
Microscopy image of a C. elegans worm, where red marks the nucleus, where NFYB-1 is present, and gre ...
Raymond Laboy
Max Planck Institute for Biology of Ageing
Criteria of this press release:
Journalists
Biology, Medicine
transregional, national
Research results
English
Microscopy image of a C. elegans worm, where red marks the nucleus, where NFYB-1 is present, and gre ...
Raymond Laboy
Max Planck Institute for Biology of Ageing
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).