Although most plant species are hermaphrodites, the separation of the sexes (dioecy) evolved in many tree species and various crop plants. Nevertheless, the underlying genetic basis remains largely elusive. An international team led by the Thünen Institute of Forest Genetics showed that a single gene determines sex in poplars. The results that have now been published in Nature Plants are of general relevance for the study and breeding of dioecious plants.
In mammals, X and Y chromosomes control sex. A master regulator found on the Y chromosome activates male development. In plants, a completely different genetic system is assumed. Since most plant species are hermaphrodites, theory predicts two mutations for the evolution of dioecy, one affecting the development of female carpels and the other one that of male stamens. The necessary genetic linkage of these two mutations is thought to initiate the evolution of sex chromosomes.
“Sex chromosomes play an important role in evolution and breeding,” Dr. Niels Müller from the Thünen Institute explains. “Since sex chromosomes exhibit suppressed recombination, they largely behave as ‘supergenes’. All gene variants are inherited together.” However, plant sex chromosomes exhibit striking levels of variability. In the poplar genus (Populus), for example, at least three different systems occur. While white poplars (P. alba) features a ZW sex-determining system, just like birds, balsam poplars (P. trichocarpa) and aspens (P. tremula) exhibit XY systems with different Y chromosomes. Scientists at the Thünen Institute of Forest Genetics, in collaboration with researchers in Sweden, Canada and Italy, showed that all this variation is based on the same underlying mechanism – the sex-specific regulation of the feminizing gene ARR17.
“With the aid of new genomic methods and data, we were able to resolve the genetics of poplar sex determination after more than 15 years of research,” says Dr. Matthias Fladung, head of the genome research group. “Excitingly, we can explain the entire genus using a single model,” his colleague Dr. Birgit Kersten adds. Contrary to theoretical predictions, a single gene (ARR17) acts as a sex switch triggering female development when on and male development when off. Employing CRISPR-Cas9-mediated gene editing, the researchers switched off ARR17 in early-flowering female aspens, causing a complete sex reversal (see figure).
White poplar naturally harbors ARR17 on the female W chromosome, thus confining its activity to female individuals. In the other poplar species an elegant solution for an XY system evolved. Partial ARR17 duplicates on the Y chromosome produce small interfering RNAs (siRNAs) that cause silencing of the ARR17 gene in males.
The single-gene sex-determining system renders genetic linkage and recombination suppression dispensable and thereby enables maintenance of sex chromosome integrity. The patterns shown for poplar may be much more common than hitherto expected. The reported results are therefore of general relevance for the study and breeding of dioecious plants, such as strawberry, spinach or ash trees. Future studies in other dioecious species will reveal how different systems of sex determination may impact species evolution.
The results of the study have been published in the scientific journal Nature Plants: (https://www.nature.com/articles/s41477-020-0672-9).
Dr. Niels Müller
Thünen Institute of Forest Genetics, Großhansdorf
Phone: +49 4102 696-145
Mail: niels.mueller@thuenen.de
Müller, N.A. et al.: A single gene underlies the dynamic evolution of poplar sex determination. Nat. Plants (2020).
https://doi.org/10.1038/s41477-020-0672-9
Sex reversal via CRISPR-Cas9-mediated knockout of the single gene ARR17: Female wild type flowers (W ...
Thünen Institute/FG
Masculinized (sex-reversed) flower of a female poplar after inactivation of the gene ARR17.
Thünen Institute/FG
Criteria of this press release:
Journalists, Scientists and scholars
Biology, Zoology / agricultural and forest sciences
transregional, national
Research results, Scientific Publications
English
Sex reversal via CRISPR-Cas9-mediated knockout of the single gene ARR17: Female wild type flowers (W ...
Thünen Institute/FG
Masculinized (sex-reversed) flower of a female poplar after inactivation of the gene ARR17.
Thünen Institute/FG
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).