idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
06/11/2020 09:02

Freshly printed magnets

Rainer Klose Kommunikation
Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

    During metal processing in the 3D laser printer, temperatures of more than 2,500 degrees Celsius are reached within milliseconds, causing some components of the alloys to evaporate. While widely considered a problem inherent to the process, Empa researchers spotted an opportunity – and are now using the effect to create new alloys with novel properties and embed them in 3D-printed metallic work pieces with micrometer precision.

    It looks quite inconspicuous to the casual beholder, hardly like groundbreaking innovation: a small metallic chessboard, four millimeters long on either side. At first glance, it shines like polished steel; at second glance, minute differences in color are visible: The tiny chessboard has 16 squares, eight appear slightly darker, the other eight a bit lighter.

    The unassuming material sample goes to show that 3D printing with the help of laser beams and metal pow-der is not only suitable for creating new geometric shapes, but also for producing new materials with completely new functionalities. The small chessboard is a particularly obvious example: Eight squares are magnetic, eight non-magnetic – the entire piece has been 3D-printed from a single grade of metal powder. Only the power and duration of the laser beam varied.

    As a starting point, an Empa team led by Aryan Arabi-Hashemi and Chris-tian Leinenbach used a special type of stainless steel, which was developed some 20 years ago by the company Hempel Special Metals in Dübendorf, among others. The so-called P2000 steel does not contain nickel, but around one percent of nitrogen. P2000-steel does not cause allergies and is well suited for medical applications. It is particularly hard, which makes conventional milling more difficult. Unfortunately, at first glance it also seems unsuitable as a base material for 3D laser printing: In the melting zone of the laser beam, the temperature quickly peaks. This is why a large part of the nitrogen within the metal normally evaporates, and the P2000 steel changes its properties.

    Turning a Problem into an Advantage

    Arabi-Hashemi and Leinenbach managed to turn this drawback into an advantage. They modified the scanning speed of the laser and the intensity of the laser beam, which melts the particles in the metal powder bed, and thus varied the size and lifetime of the liquid melt pool in a specified manner. In the smallest case, the pool was 200 microns in diameter and 50 microns deep, in the largest case 350 microns wide and 200 microns deep. The larger melt pool allows much more nitrogen to evaporate from the alloy; the solidifying steel crystallizes with a high proportion of magnetizable ferrite. In the case of the smallest melt pool, the melted steel solidifies much faster. The nitrogen remains in the alloy; the steel crystallizes mainly in the form of non-magnetic austenite.

    During the experiment, the researchers had to determine the nitrogen content in tiny, millimeter-sized metal samples very precisely and measure the local magnetization to within a few micrometers, as well as the volume ratio of austenitic and ferritic steel. A number of highly developed analytical methods available at Empa were used for this purpose.

    Shape Memory Alloy become smart

    The experiment, which seems like a mere gimmick, could soon add a crucial tool to the methodology of metal production and processing. “In 3D laser printing, we can easily reach temperatures of more than 2500 degrees Celsius locally,” says Leinenbach. “This allows us to vaporize various components of an alloy in a targeted manner – e.g. manganese, alumnium, zinc, carbon and many more – and thus locally change the chemical composition of the alloy.” The method is not limited to stainless steels, but can also be useful for many other alloys.

    Leinenbach thinks about, for instance, certain nickel-titanium alloys known as shape memory alloys. At what temperature the alloy “remembers” its programmed shape depends on just 0.1 percent more or less nickel in the mixture. Using a 3D laser printer, structural components could be manufactured that react locally and in a staggered manner to different temperatures.

    Fine Structures for the Electric Motor of the Future

    The ability to produce different alloy compositions with micrometer precision in a single component could also be helpful in the design of more efficient electric motors. For the first time, it is now possible to build the stator and the rotor of the electric motor from magnetically finely structured materials and thus make better use of the geometry of the magnetic fields.

    The crucial factor in the discovery of the relationship between laser power, the size of the melt pool and the material’s properties was the expertise in the field of Additive Manufacturing, which has been built up at Empa over the last nine years. Ever since then, Christian Leinenbach and his team, as one of the world’s leading research groups in the field, have devoted themselves to materials science issues related to 3D laser printing processes. At the same time, Empa researchers have gained experience in process monitoring, especially in measuring the melt pools, whose size and lifetime are crucial for the targeted modification of alloys.


    Contact for scientific information:

    Dr. Christian Leinenbach
    Advanced Materials Processing
    Phone +58 765 45 18
    Christian.Leinenbach@empa.ch


    Original publication:

    A Arabi-Hashemi, X Maeder, R Figi, C Schreiner, S Griffiths, C Leinenbach; 3D magnetic patterning in additive manufacturing via site-specific in-situ alloy modification; Applied Materials Today (2020); doi:10.1016/j.apmt.2019.100512


    More information:

    https://www.empa.ch/web/s604/3d-druck


    Images

    Precisely Magnetized: Iron filings stick to this mini chessboard with four millimeter edge length. The partially magnetic structure was produces from a single type of steel power at different temperatures.
    Precisely Magnetized: Iron filings stick to this mini chessboard with four millimeter edge length. T ...

    Empa

    Christian Leinenbach and Ariyan Arabi-Hashemi use a 3D laser printer to fine-tune stainless steel alloys.
    Christian Leinenbach and Ariyan Arabi-Hashemi use a 3D laser printer to fine-tune stainless steel al ...

    Empa


    Criteria of this press release:
    Journalists
    Chemistry, Materials sciences, Mechanical engineering
    transregional, national
    Research results
    English


     

    Precisely Magnetized: Iron filings stick to this mini chessboard with four millimeter edge length. The partially magnetic structure was produces from a single type of steel power at different temperatures.


    For download

    x

    Christian Leinenbach and Ariyan Arabi-Hashemi use a 3D laser printer to fine-tune stainless steel alloys.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).