When we cut our fingers, blood rushes out of the wound to close it. However, the vegetable, we just wanted to slice and dice, would have reacted utterly different to this injury. Scientists at the Institute of Science and Technology Austria (IST Austria) investigated how plant cells heal wounds. In their results, published in PNAS on June 15, the researchers discovered that the hormone Auxin and pressure changes are crucial to regeneration.
All living organisms suffer injuries. Animals and humans have movable cells, specialized in finding, approaching, and healing wounds. Plant cells, however, are immobile and can't encapsulate the damage. Instead, adjacent cells multiply or grow to fill the injury. In this precision process, each unique cell decides whether it will stretch or divide to fill the wound. Even though scientists study regeneration in plants since the mid-19th century, the cell's 'reasons' for either choice remained unclear.
Now, scientists in the group of Professor Jiří Friml from the Institute of Science and Technology Austria (IST Austria) discovered that the hormone Auxin and pressure guide the plant's way of regenerating.
"It is incredibly fascinating how robust and flexible plant regeneration is, considering how static those organisms are," says Lukas Hoermayer, a leading scientist in this study.
To investigate wound healing, the scientists injured a thale cress root with a laser. They then tracked cells during regeneration with a microscope. The scientists found that the hormone Auxin, which is essential in plant growth and development, also plays a vital role in wound healing. It builds up in those cells directly touching the wound and facilitates the plant's response to injury.
When the scientists artificially changed the Auxin amounts, either no cells or too many cells responded to the wound. This uncoordinated process, sometimes even led to tumorous swelling of the root.
"Only the precise coordination of many cells throughout the whole tissue yields a defined and localized wound response," explains Lukas Hoermayer.
Furthermore, the team recorded a pressure change within the plant, caused by the collapsing cells of the wound. When the scientists reduced the cellular pressure before cutting the plant, the pressure difference vanished, and the regeneration was weakened.
By observing plant regeneration and modifying it with chemical treatments, the scientists identified Auxin concentration and pressure changes as governing processes. Their results advance the understanding of how roots manage to heal wounds and hence survive in sandy soil or the presence of root-attacking herbivores.
Lukas Hoermayer, Juan Carlos Montesinos, Petra Marhava, Eva Benková, Saiko Yoshida, Jiří Friml. Wounding induced changes in cellular pressure and localized Auxin signaling spatially coordinate restorative divisions in roots. PNAS. DOI: 10.1073/pnas.2003346117
Too much Auxin may cause tumorous behavior
Lukas Hoermayer / IST Austria
Lukas Hoermayer / IST Austria
Criteria of this press release:
Journalists
Biology
transregional, national
Research results
English
You can combine search terms with and, or and/or not, e.g. Philo not logy.
You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).
Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.
You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).
If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).