idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/02/2020 16:49

Starke Felder und ultraschnelle Bewegungen – wie sich Elektronen in Wasser erzeugen und steuern lassen

Anja Wirsing Pressestelle des Forschungsverbundes Berlin e.V.
Forschungsverbund Berlin e.V.

    Wassermoleküle führen bei Raumtemperatur ultraschnelle Zitterbewegungen aus und erzeugen extrem starke elektrische Felder in ihrer Umgebung. Neue Experimente zeigen, wie sich unter Ausnutzung dieser Felder mit einem externen Feld bei Terahertz-Frequenzen freie Elektronen in der Flüssigkeit erzeugen und manipulieren lassen.

    Das Wassermolekül H2O besitzt auf Grund der unterschiedlichen Elektronendichte des Sauerstoff-(O)- und der Wasserstoff-(H)-Atome ein elektrisches Dipolmoment (Abb. 1a). In flüssigem Wasser rufen diese molekularen Dipole ein elektrisches Feld hervor, dessen Stärke auf einer Femtosekunden-Zeitskala (1 Femtosekunde = 10 hoch -15 Sekunden = ein Milliardstel einer Millionstel Sekunde) fluktuiert und für kurze Zeit Spitzenwerte von bis zu 300 MV/cm (300 Millionen Volt pro cm) erreicht (Abb. 1b). Bei solch hohen elektrischen Feldern kann ein Elektron seinen gebundenen Zustand im Wassermolekül, ein Molekülorbital (Abb. 1b), verlassen und durch eine Energiebarriere in die umgebende Flüssigkeit tunneln, was einen quantenmechanischen Ionisationsprozess darstellt. Im Gleichgewicht kehrt das Elektron extrem schnell in seinem Ausgangszustand zurück, da das fluktuierende Feld keine Vorzugsrichtung aufweist und sich das Elektron deshalb nicht vom Ort der Ionisation entfernt. Wegen der effizienten Ladungsrekombination bleibt die Zahl ungebundener (freier) Elektronen sehr gering, sie beträgt im zeitlichen Mittel weniger als ein Milliardstel der Zahl von Wassermolekülen.

    Forscher des Max-Born-Instituts haben jetzt gezeigt, dass ein äußeres elektrisches Feld im Frequenzbereich um 1 Terahertz (1 THz = 1012 Hz, ca. 500 mal höher als typische Handyfrequenzen) die Zahl freier Elektronen bis zum Tausendfachen erhöhen kann. Das THz-Feld besitzt eine maximale Stärke von 2 MV/cm, also weniger als 1 % der Stärke des fluktuierenden Feldes; es hat jedoch eine räumliche Vorzugsrichtung (Abb. 2). Entlang dieser Vorzugsrichtung werden die durch das fluktuierende Feld erzeugten Elektronen beschleunigt und erreichen eine kinetische Energie von ca. 11 eV, die Ionisationsenergie des Wassermoleküls. Hierdurch wird die Ladungsrekombination am Ionisationsort unterdrückt. Die Elektronen bewegen sich über Distanzen von vielen Nanometern (1 Nanometer = 10 hoch -9 m), bevor sie an einem anderen Ort in der Flüssigkeit lokalisiert werden. Dieser Prozess ruft starke Änderungen der Absorption und des Brechungsindex der Flüssigkeit hervor (Abb. 2c), über die in den Experimenten die Elektronendynamik mit der Methode der sog. zweidimensionalen THz-Spektroskopie (Abb. 2a) zeitaufgelöst verfolgt wurde.

    Diese überraschenden Ergebnisse enthüllen einen neuen Aspekt extrem starker elektrischer Felder in Wasser, das Auftreten spontaner Tunnelionisationsprozesse. Diese könnten eine wichtige Rolle bei der Eigendissoziation von H2O-Molekülen in OH-- und H3O+-Ionen spielen. Darüber hinaus zeigen die Untersuchungen, wie durch Anwendung maßgeschneiderter starker THz-Felder Erzeugung, Transport und Lokalisierung von Ladungen, d.h. grundlegende elektrische Eigenschaften von Flüssigkeiten, manipuliert werden können.

    Ausführliche Abbildungsunterschriften:

    Abb. 1 (a) Momentaufnahme der Anordnung von H2O-Molekülen in flüssigem Wasser (rot: Sauerstoffatome, grau: Wasserstoffatome). Die punktierten Linien deuten Wasserstoffbrücken zwischen den Molekülen an. Jedes Wassermolekül besitzt ein Dipolmoment d, das in seiner Umgebung ein elektrisches Feld hervorruft. Die Anordnung der Moleküle fluktuiert im Femtosekunden-Zeitbereich. (b) Fluktuierendes elektrisches Feld der Flüssigkeit. Die blaue Kurve zeigt das momentan auf das Molekülorbital 3a1 (Inset) wirkende elektrische Feld als Funktion der Zeit in Femtosekunden. Die höchsten Feldspitzen induzieren den Prozess der Tunnelionisation, wodurch ein Elektron e- das Orbital verlassen kann.

    Abb. 2 Zweidimensionale Terahertz (2D-THz) Spektroskopie. (a) Schema des Experiments. Zwei um die Verzögerungszeit t getrennte THz-Impulse A (Anregung) und B (Abtasten) wechselwirken mit einem dünnen Wasserstrahl (blau, Dicke 50 µm). Das durchgelassene THz-Feld wird mit einem phasenempfindlichen Detektor gemessen, der auf dem Prinzip des elektrooptischen Abtastens (ElectroOptic Sampling, EOS) beruht. (b) Zeitlicher Verlauf des elektrischen Feldes von Impuls A (grün) und B (orange). Das nach Anregung durch den Impuls A transmittierte Feld des Impulses B ist als gestrichelte Linie gezeigt (Verzögerungszeit (delay) zwischen Impuls A und B t = 7000 fs). (c) Brechungsindex von Wasser ohne THz-Anregung (durchgezogene Linien) und nach der Erzeugung von Elektronen (Symbole, Elektronenkonzentration 5×10-6 Mol/Liter). Schwarze Kurven zeigen den Realteil des Brechungsindex, rote den Imaginärteil. Letzterer ist proportional zur Absorption des THz-Feldes im Wasserstrahl. Beide Anteile des Brechungsindex werden durch die Erzeugung von Elektronen deutlich verringert.


    Contact for scientific information:

    Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) im Forschungsverbund Berlin e.V.

    Dr. Ahmed Ghalgaoui, ahmed.ghalgaoui@mbi-berlin.de, Tel. +49 30 6392-1282
    Dr. Benjamin Philipp Fingerhut, benjamin.fingerhut@mbi-berlin.de, Tel. +49 30 6392-1404
    Prof. Dr. Klaus Reimann, klaus.reimann@mbi-berlin.de, Tel. +49 30 6392-1476
    Dr. Michael Woerner, michael.woerner@mbi-berlin.de, Tel. +49 30 6392-1470
    Prof. Dr. Thomas Elsaesser, thomas.elsaesser@mbi-berlin.de, Tel. +49 30 6392-1400


    Original publication:

    Field-induced tunneling ionization and terahertz driven electron dynamics in liquid water
    A. Ghalgaoui, L.-M. Koll, B. Schütte, B. P. Fingerhut, K. Reimann, M. Woerner, T. Elsaesser
    J. Phys. Chem. Lett. 11, 7717-7722 (2020, open access), https://doi.org/10.1021/acs.jpclett.0c02312


    More information:

    https://mbi-berlin.de/de/forschung/highlights/details/strong-fields-and-ultrafas...


    Images

    Abb. 1 (siehe ausführliche Bildunterschrift unter der Pressemitteilung)
    Abb. 1 (siehe ausführliche Bildunterschrift unter der Pressemitteilung)

    MBI Berlin

    Abb. 2 (siehe ausführliche Bildunterschrift unter der Pressemitteilung)
    Abb. 2 (siehe ausführliche Bildunterschrift unter der Pressemitteilung)

    MBI Berlin


    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Chemistry, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Abb. 1 (siehe ausführliche Bildunterschrift unter der Pressemitteilung)


    For download

    x

    Abb. 2 (siehe ausführliche Bildunterschrift unter der Pressemitteilung)


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).