idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/03/2020 09:30

Novel technology for the selection of single photosynthetic cells for industry and ecosystem understanding

Elin Bäckström, Press officer Uppsala University Kommunikationsavdelningen / Communications Department
Schwedischer Forschungsrat - The Swedish Research Council

    You might need a microscope to witness the next agricultural revolution. New research, published in the journal Science Advances, demonstrates how microfluidic technologies can be used to identify, isolate and propagate specific single photosynthetically active cells for fundamental industry applications and improved ecosystem understanding.

    Natural environments are inherently dynamic and require photosynthetic organisms to adapt their physiology to make optimal use of available resources and grow to the best of their abilities. However, not all photosynthetic organisms are equally efficient in this physiological fine-tuning, and where some, for example, succumb to the effects of temperature stress, others persist and grow. In agriculture, humans have taken advantage of this phenotypic heterogeneity in natural plant populations for thousands of years: the selective breeding of more resistant or productive plant phenotypes has given rise to many of our modern crops and has sustained much of human progress. While microalgae and cyanobacteria have a similar potential for bioenergy production and biosynthesis of food and chemicals, until now, the tools for their selection have been blunt and unwieldy, relying on bulk culture – akin to selecting for traits in wheat at the level of the landscape.

    In this new study, a team of researchers from Sweden, Denmark and Switzerland reports on a novel microfluidic technology called ‘PhenoChip’ which allows for the identification and selection of unicellular phototrophs under relevant environments.

    “Similar to our ancestors selecting a more drought-resistant plant, we can now pick and propagate single phenotypes and start asking fundamental questions. What mechanism causes this phenotype to emerge? Does it persist over many generations? Can we use it to obtain increased biomass yields for biotechnological applications or select resilient phenotypes from natural environments?” says first author Lars Behrendt, Assistant Professor at the Department of Environmental Toxicology at Uppsala University.

    In a first-proof-of-concept application, the team used PhenoChip on single cells essential to coral reef health, ecosystems currently under pressure due to changes in climate. In their study, they exposed cells of the coral symbiont Symbiodinium to thermal and chemical treatments, both relevant to the onset of coral bleaching. This enabled the identification of single cells with elevated resilience to rising temperatures and the selection of cells that maintained specific phenotypesfor several generations. PhenoChip’s assisted evolution of Symbiodinium could thus help ongoing initiatives aiming to mitigate threats to coral reefs resulting from projected changes in sea surface temperatures and other stressors.

    “Conceivably we could use PhenoChip to create a ‘library’ of desired Symbiodinium phenotypes and try to supply these symbionts—which have not been genetically manipulated but were selected for being more naturally robust—to bleached corals under laboratory conditions. While we don’t yet know whether this would improve the ability of corals to recover and persist in the face of future stress, it’s an exciting thought,” says Behrendt.


    Contact for scientific information:

    For further information:

    Assistant Professor Lars Behrendt, Department of Environmental Toxicology, Uppsala University and SciLifeLab. Email: lars.behrendt@scilifelab.uu.se, phone: +46 (0) 76 315 10 45


    Original publication:

    Citation: L. Behrendt, et al (2020); PhenoChip: A single-cell phenomic platform for high-throughput photophysiological analyses of microalgae. Sci. Adv. 6, eabb2754 (2020). DOI: 10.1126/sciadv.abb2754


    More information:

    https://resources.mynewsdesk.com/image/upload/t_next_gen_article_large_767/zhsg9...


    Images

    Criteria of this press release:
    Journalists
    Biology, Chemistry, Electrical engineering
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).