idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
09/30/2020 16:00

Fraunhofer ISE Receives f-cell Award 2020

Karin Schneider Presse und Public Relations
Fraunhofer-Institut für Solare Energiesysteme ISE

    The Fraunhofer Institute for Solar Energy Systems ISE received the f-cell Award this year in the category "Research & Development". The prize distinguished their work on the development of flatbed screen printing as an industrially scalable manufacturing process for fuel cell electrodes. Minister of the Environment, Climate Protection and the Energy Sector for Baden-Wuerttemberg Franz Untersteller presented the award personally during the f-cell conference in Stuttgart on September 29.

    Large-scale production research – from innovation to prototype to finished product – will be a driving force for the industrialization of fuel cells. Improved fuel cell performance as well as optimized manufacturability in terms of cost efficiency, speed and reliability will lead to better and cheaper products. In the DEKADE project funded by the German Federal Ministry of Education and Research (BMBF), Fraunhofer ISE advanced the development of screen printing to a scalable manufacturing process for fuel cell production with high throughput and high quality. Two departments at Fraunhofer ISE "Production Technology - Structuring and Metallization" and "Fuel Cell Systems" combined their expertise in photovoltaics and hydrogen technology to achieve this goal. Their submission was entitled "Through-Plane Ionomer Gradients in Fuel Cell Catalyst Layers for Enhanced Power Density."

    Screen printing – a technology used in the production of solar cells for decades – enables the industrial application of homogeneous layers as stacks and thus the realization of innovative, structured MEA architectures. In this context, Fraunhofer ISE has developed continuous ionomer-graduated catalyst layers, which enable a significantly improved power density during the operation of fuel cells. At low current densities, power generation takes place near the membrane and is not yet limited by insufficient oxygen. For better proton conductivity into the catalyst layer, the ionomer content can be increased here (see figure left). At high current densities, the reactive zone moves deeper into the catalyst layer and the oxygen diffusion resistance limits the power. Because of this, the researchers selectively incorporated fewer ionomers in these zones in order to minimize the oxygen diffusion resistance (right).
    This approach led to optimized proton conductivity and oxygen supply. The resulting fuel cell outperformed conventional reference cells that are in the automotive sector by about 10 percent. "This success was achieved without introducing any new or extra material into the production process, which means that performance was improved without any increase in material costs," explains Dr. Matthias Klingele, head of group Cell Analysis and Materials at Fraunhofer ISE, who accepted the award together with his colleague Dr. Roman Keding.

    About the F-Cell Award
    The Baden-Württemberg Ministry of the Environment, Climate Protection and the Energy Sector and the Stuttgart Region Economic Development Corporation have been supporting the f-cell award since 2001 to acknowledge outstanding developments in one of the most future-oriented technologies – hydrogen and fuel cells – and to foster further innovations.

    The prize is awarded in the two categories "Research & Development" and "Products & Markets.” The focus of the criteria is on the degree of innovation, market potential and the benefits for the environment and society.


    More information:

    https://www.ise.fraunhofer.de/en/press-media/press-releases/2020/fraunhofer-ise-...


    Images

    The f-cell Award was presented by Baden-Württemberg's Environment Minister Franz Untersteller (left) to Dr. Roman Keding (center) and Dr. Matthias Klingele.
    The f-cell Award was presented by Baden-Württemberg's Environment Minister Franz Untersteller (left) ...

    © f-cell Award/ Angelika Emmerling

    Schematic diagrams showing the continuous ionomer gradient in the cathode catalyst layer on the polymer electrolyte membrane (PEM).
    Schematic diagrams showing the continuous ionomer gradient in the cathode catalyst layer on the poly ...

    © Fraunhofer ISE


    Attachment
    attachment icon Press Release [PDF]

    Criteria of this press release:
    Business and commerce, Journalists, Scientists and scholars
    Chemistry, Energy, Materials sciences, Mechanical engineering, Physics / astronomy
    transregional, national
    Contests / awards, Scientific conferences
    English


     

    The f-cell Award was presented by Baden-Württemberg's Environment Minister Franz Untersteller (left) to Dr. Roman Keding (center) and Dr. Matthias Klingele.


    For download

    x

    Schematic diagrams showing the continuous ionomer gradient in the cathode catalyst layer on the polymer electrolyte membrane (PEM).


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).