idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/19/2020 16:51

AI methods of analysing social networks find new cell types in tissue

Uppsala University, Press contact +46 70-167 92 96 Kommunikationsavdelningen / Communications Department
Schwedischer Forschungsrat - The Swedish Research Council

    In situ sequencing enables gene activity inside body tissues to be depicted in microscope images. To facilitate interpretation of the vast quantities of information generated, Uppsala University researchers have now developed an entirely new method of image analysis. Based on algorithms used in artificial intelligence, the method was originally devised to enhance understanding of social networks. The researchers’ study is published in The FEBS Journal.

    The tissue composing our organs consists of trillions of cells with various functions. All the cells in an individual contain the same genes (DNA) in their nuclei. Gene expression occurs by means of “messenger RNA” (mRNA) – molecules that carry messages from the nucleus to the rest of the cell, to direct its activities. The mRNA combination thus defines the function and identity of every cell.

    RNA transcripts are obtainable through in situ sequencing. The researchers behind the new study had previously been involved in developing this method, which shows millions of detected mRNA sequences as dots in microscope images of the tissue. The problem is that distinguishing all the important details may be difficult. This is where the new AI-based method may come in useful, since it allows unsupervised detection of cell types as well as detection of functions within an individual cell and of interactions among cells.

    “We’re using the latest AI methods – specifically, graph neural networks, developed to analyse social networks; and adapting them to understand biological patterns and successive variation in tissue samples. The cells are comparable to social groupings that can be defined according to the activities they share in their social networks like Twitter, sharing their Google search results or TV recommendations,” says Carolina Wählby, professor of quantitative microscopy at the Department of Information Technology, Uppsala University.

    Earlier analytical methods of this type of data depend on knowing which cell types the tissue contains, and identifying the cell nuclei in it, in advance. The method conventionally used, known as “single-cell analysis”, may lose some mRNA and miss certain cell types. Even with advanced automated image analysis, it is often difficult to find the various cell nuclei if, for example, the cells are packed densely together.

    “With our analysis, which we call ‘spage2vec’, we can now get corresponding results without any previous knowledge of expected cell types. And what’s more, we can find new cell types and intra- or intercellular functions in tissue,” Wählby says.

    The research group are now working further on its analytical method by investigating differentiation and organisation of various types of cells during the early development of the heart. This is pure basic research, intended to provide more knowledge of the mechanisms that govern development, both when everything is functioning as it should and when a disease is present. In another project, a collaboration with cancer researchers, the Uppsala group are hoping to be able to apply the new methods to gain a better understanding of how tumour tissue interacts, at molecular level, with surrounding healthy tissue. The aim is that, in the long term, this will culminate in better treatments that can be adapted to individual patients.


    Contact for scientific information:

    For more information, please contact:
    Carolina Wählby, professor at the department of Information Technology, Uppsala University
    Tel: +46 72 701 71 51, email carolina.wahlby@it.uu.se


    Original publication:

    G. Partel, C. Wählby, Spage2vec: Unsupervised representation of localized spatial gene expression signatures”, The FEBS Journal. DOI: 10.1111/febs.15572


    More information:

    https://resources.mynewsdesk.com/image/upload/t_next_gen_article_large_767/zvc7x...


    Images

    Criteria of this press release:
    Journalists
    Information technology
    transregional, national
    Research results
    English


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).