idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
10/27/2020 16:30

Eine Frage der Affinität: Wie man Materialien für organische Solarzellen entwirft

Dr. Christian Schneider Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Polymerforschung

    Eine Zusammenarbeit von Wissenschaftlerinnen und Wissenschaftlern des Max-Planck-Instituts für Polymerforschung (MPI-P) in Deutschland und der King Abdullah University of Science and Technology (KAUST) in Saudi-Arabien hat organische Solarzellen untersucht und Designregeln für lichtabsorbierende Farbstoffe abgeleitet, die dazu beitragen können, diese Zellen effizienter zu machen und gleichzeitig das Absorptionsspektrum der Zellen an die Bedürfnisse der gewählten Anwendung anzupassen.

    Die meisten von uns sind mit Solarzellen aus Silizium vertraut, die vielfach auf den Dächern moderner Häuser zu finden sind. Diese Zellen bestehen aus zwei Siliziumschichten, die verschiedene Atome wie Bor oder Phosphor enthalten. Werden diese Schichten kombiniert, lenken sie die durch das absorbierte Sonnenlicht erzeugten Ladungen zu den Elektroden - dieser (Foto-)Strom kann dann zum Antrieb elektronischer Geräte verwendet werden.

    Bei organischen Solarzellen ist die Situation anders: Hier werden zwei organische Materialien miteinander vermischt, anstatt sie in einer Schichtstruktur anzuordnen. Es handelt sich um Mischungen verschiedener Arten von Molekülen. Eine Molekül-Art, der Akzeptor, nimmt gerne Elektronen von der anderen Art, dem Donor, auf. Um zu quantifizieren, wie wahrscheinlich ein "Elektronentransfer" zwischen diesen Materialien stattfindet, misst man die so genannte "Elektronenaffinität" und "Ionisierungsenergie" jedes Materials. Diese Größen geben an, wie einfach es ist, einem Molekül ein Elektron hinzuzufügen oder ein Elektron zu entfernen. Neben der Bestimmung des Wirkungsgrades organischer Solarzellen steuern die Elektronenaffinität und die Ionisierungsenergie auch andere Materialeigenschaften, wie beispielsweise Farbe und Transparenz.

    Durch die Paarung von Donor- und Akzeptormaterialien entsteht eine Solarzelle. In einer organischen Solarzelle übertragen Lichtteilchen ("Photonen") ihre Energie auf Elektronen. Angeregte Elektronen hinterlassen positive Ladungen, so genannte "Löcher". Diese Elektron-Loch-Paare werden dann aufgrund der Unterschiede in der Elektronenaffinität und der Ionisationsenergie der beiden Materialien an deren Grenzfläche getrennt.
    Bisher gingen die Wissenschaftler davon aus, dass sowohl die Elektronenaffinität als auch die Ionisierungsenergie für die Funktionalität der Solarzelle gleich wichtig sind.

    Forschende von KAUST und MPI-P haben nun entdeckt, dass bei vielen Donor-Akzeptor-Mischungen jedoch vor allem die Differenz der Ionisationsenergie zwischen den beiden Materialien die Effizienz der Solarzelle bestimmt. Die Kombination von Ergebnissen aus optischen Spektroskopie-Experimenten, die in der Gruppe von Frédéric Laquai an der KAUST durchgeführt wurden, sowie von Computersimulationen, die in der Gruppe von Denis Andrienko, MPI-P, in dem von Kurt Kremer geleiteten Arbeitskreis durchgeführt wurden, ermöglichte die Ableitung präziser Designregeln für molekulare Farbstoffe, die auf die Maximierung der Effizienz der Solarzelle abzielen.

    "In Zukunft wäre es zum Beispiel denkbar, transparente Solarzellen herzustellen, die nur Licht außerhalb des für den Menschen sichtbaren Bereichs absorbieren - dann aber mit maximaler Effizienz in diesem Bereich", sagt Denis Andrienko, Mitautor der in der Zeitschrift "Nature Materials" veröffentlichten Studie. "Mit solchen Solarzellen könnten ganze Häuserfronten als aktive Fläche genutzt werden", fügt Laquai hinzu.

    Die Autoren gehen davon aus, dass sie mit diesen Studien einen Wirkungsgrad der Solarzellen von 20 % erreichen können, ein Ziel, das die Industrie für eine kostengünstige Anwendung der organischen Photovoltaik im Auge hat.


    Contact for scientific information:

    Dr. Denis Andrienko
    Tel.: +49 6131 379-147
    eMail: denis.andrienko@mpip-mainz.mpg.de


    Original publication:

    Karuthedath, S., Gorenflot, J., Firdaus, Y. et al. Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nat. Mater. (2020).
    https://doi.org/10.1038/s41563-020-00835-x


    More information:

    https://www2.mpip-mainz.mpg.de/~andrienk/ - Webseite von Denis Andrienko


    Images

    Die untersuchten Farbstoffe, aus denen moderne organische Solarzellen aufgebaut sind, können hinsichtlich ihrer Effizienz mit den bisher verwendeten Akzeptor-Molekülen – sogenannten Fullerenen – gleichziehen bzw. sie übertreffen.
    Die untersuchten Farbstoffe, aus denen moderne organische Solarzellen aufgebaut sind, können hinsich ...

    © MPI-P


    Criteria of this press release:
    Journalists, Scientists and scholars, all interested persons
    Chemistry, Electrical engineering, Energy, Materials sciences, Physics / astronomy
    transregional, national
    Scientific Publications
    German


     

    Die untersuchten Farbstoffe, aus denen moderne organische Solarzellen aufgebaut sind, können hinsichtlich ihrer Effizienz mit den bisher verwendeten Akzeptor-Molekülen – sogenannten Fullerenen – gleichziehen bzw. sie übertreffen.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).