idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/10/2020 13:23

Suche nach Axionen: MADMAX-Testaufbau kommt ans CERN

Barbara Wankerl Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Physik

    Ob Axionen existieren ist offen. Wenn sie existieren, könnten sich zwei offene Flanken in der Teilchenphysik schließen: Das Rätsel, woraus Dunkle Materie besteht – und die Frage, warum die starke Wechselwirkung, eine der vier Kräfte im Universum, ein besonderes Merkmal aufweist*. In dem internationalen Projekt MADMAX wird derzeit unter Federführung des Max-Planck-Instituts für Physik eine Suchmaschine für diese bisher rein hypothetischen Teilchen entwickelt. Die Kollaboration erhält nun wichtige Unterstützung vom CERN.

    Axionen wurden ursprünglich eingeführt, um die Sonderrolle der starken Wechselwirkung bezüglich der Zeitumkehr- (CP-) Symmetrie zu erklären. Sie lassen sich nur schwerlich mit anderen Teilchenarten vergleichen. Die Masse eines Axion-Teilchens wird irgendwo zwischen 1 Mikroelektronenvolt und 15 Millielektronenvolt verortet. Damit liegt das Axion deutlich unter der Masse des leichtesten bekannten Teilchens, des Neutrinos.

    Der Theorie nach sollten im frühen Universum extrem viele Axionen entstanden sein. Daher kann man sie sich anschaulich als Wellenphänomen des zugrundliegenden Feldes vorstellen – so wie die Wellenbewegungen auf einer Wasseroberfläche.

    Axion, aber auch ein wenig Lichtteilchen

    Um Axionen nachzuweisen, machen sich die beteiligten Wissenschaftlerinnen und Wissenschaftler eine Eigenheit der Quantenmechanik zunutze: Gewisse Teilchen mit gleichen Quantenzahlen können sich ineinander verwandeln. Man sagt auch, dass diese Teilchen untereinander mischen. So kann das Axion auch als eine Mischung aus Axion und einem sehr geringen Antail von zwei Lichtteilchen (Photonen) beschrieben werden.

    „Das führt dazu, dass sich in einem starken Magnetfeld Axionen in Photonen verwandeln können. Diese können dann prinzipiell mit empfindlichen Detektoren in Form von Radiowellen nachgewiesen werden“, erklärt Béla Majorovits, Wissenschaftler am Max-Planck-Institut für Physik und Sprecher von MADMAX.

    Mit vielen Scheiben zum Nachweis des Axions

    An einem solchen Axion-Photon-Umwandler wird derzeit im Rahmen des internationalen MADMAX Projekts gearbeitet. An einem Übergang zwischen zwei Medien, zum Beispiel Luft und Saphir, erzeugt der Photonenanteil der Axionen Radiowellen. Um dieses äußerst schwache Signal zu messen, müssen viele solcher Medienübergänge in Resonanz geschaffen werden.

    Die MADMAX-Kollaboration wurde 2017 gegründet; derzeit entsteht der erste Prototyp. Er besteht aus einem Spiegel und aus bis zu 20 Scheiben aus Saphir oder Lanthanaluminat mit einem Durchmesser von 30 Zentimeter. Als Testmagnet stellt das CERN der Kollaboration nun einen 1,6 Tesla starken Dipol-Magnet mit hinreichend großer Öffnung zur Verfügung: Der Morpurgo-Magnet gehört zur Ausrüstung des H8-Teststrahls am SPS-Ring. Letzterer dient auch als Vorbeschleuniger des Large Hadron Collider (LHC).

    Suche nach einem weiteren Teilchen

    „Die Genehmigung, unseren Aufbau im Morpurgo-Magnet am CERN testen zu können ist ein sehr wichtiger Schritt für unser Vorhaben: Wir werden unser Konzept und die verwendeten Technologien auf das sorgfältigste überprüfen können – eine wichtige Vorarbeit, um Entscheidungen für das eigentliche Experiment zu treffen. Außerdem sollten wir auch eine erste Suche nach einem so genannten ‚axion-like particle‘, einem weiteren mit dem Axion verwandten Anwärter für Dunkle Materie starten können“, sagt Majorovits.

    Für das endgültige Experiment wird ein einzigartiger Dipol-Magnet mit etwa 10 Tesla Feldstärke und 1,35 Meter großen Öffnung für den Axionen-Photonen-Wandler benötigt. Dieser Magnet ist momentan in Planung. Die Forschung und Entwicklung für dieses Projekt schreiten gut voran. Sollte das Axion, wie von einigen Theorien vorhergesagt, eine Masse um 100 Mikroelektronenvolt haben, könnte die Wissenschaft in den nächsten zehn Jahren die besonderen Eigenschaften der starken Wechselwirkung klären – und das Problem der Dunklen Materie lösen.


    Contact for scientific information:

    Max-Planck-Institut für Physik
    PD Dr. Béla Majorovits
    bela@mpp.mpg.de
    +49 89 32354-262


    More information:

    https://www.mpp.mpg.de/aktuelles/meldungen/detail/suche-nach-axionen-madmax-test...


    Images

    Testaufbau des MADMAX-Experiments: Beim Übergang zwischen Luft und dem Material der Scheiben erzeugt der Photonenanteil der Axionen Radiowellen, die sich messen lassen. (Foto: MADMAX Collaboration)
    Testaufbau des MADMAX-Experiments: Beim Übergang zwischen Luft und dem Material der Scheiben erzeugt ...
    MADMAX Collaboration
    MADMAX Collaboration


    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Research projects
    German


     

    Testaufbau des MADMAX-Experiments: Beim Übergang zwischen Luft und dem Material der Scheiben erzeugt der Photonenanteil der Axionen Radiowellen, die sich messen lassen. (Foto: MADMAX Collaboration)


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).