idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/12/2020 12:53

Von Daten zu intelligenten Systemen: Data Science als Schlüssel für erfolgreiche KI

Birgit Obermeier Geschäftsstelle
Lernende Systeme - Die Plattform für Künstliche Intelligenz

    Medizinische Assistenzsysteme oder Software-Lösungen zur vorausschauenden Wartung von Industrieanlagen versprechen großen Nutzen. Sie basieren auf Daten, die mit Methoden der Künstlichen Intelligenz (KI) ausgewertet werden. Voraussetzung ist ein umfassendes Datenmanagement. Warum es bei der Entwicklung von KI-Systemen auf die „richtigen“ Daten ankommt, was Data Engineering bedeutet und welche Kompetenzen Data Science-Fachleute benötigen, erläutert Kai-Uwe Sattler, Professor für Datenbanken und Informationssysteme an der TU Ilmenau. Er ist Mitglied der Arbeitsgruppe „Technologische Wegbereiter und Data Science“ der Plattform Lernende Systeme und Co-Autor des Whitepapers „Von Daten zu KI“.

    Herr Sattler, große Mengen an Daten plus intelligente Algorithmen ergeben nutzbringende KI-Anwendungen. Was ist falsch an dieser Rechnung?

    Kai-Uwe Sattler: Große Datenmengen allein genügen leider nicht. Zwar werden gerade für das Lernen mit tiefen Netzen große Trainingsdaten benötigt, aber dies erhöht natürlich auch den Aufwand der Datenerfassung, -vorbereitung und des Trainings. Daher kommt es darauf an, die "richtigen" Daten als Trainingsdaten zur Verfügung zu haben. So sollten die Trainingsdaten – beispielsweise für die Bilderkennung – natürlich die zu identifizierenden Objekte enthalten. Aber eben auch Negativbeispiele in allen möglichen bzw. auftretenden Variationen. Hierbei sind Bias (Voreingenommenheit) und Diskriminierung schon bei der Datenauswahl zu vermeiden. In der Literatur ist eine ganze Reihe von Beispielen für Bias und Diskriminierung beschrieben, die zeigen, welche Auswirkungen dies haben kann.

    Wie werden aus Daten brauchbare Daten? Worauf kommt es beim Data Engineering an?

    Kai-Uwe Sattler: Zunächst müssen überhaupt geeignete Daten erfasst werden, die das zu bearbeitende Problem repräsentieren. So sollten für eine Anwendung im Bereich Predictive Maintenance eben auch Fehlerzustände, und nicht nur normale Betriebsdaten erfasst werden. Sind Daten erfasst, müssen sie aufbereitet werden. Dies umfasst die Bereinigung wie das Erkennen und Entfernen fehlerhafter Werte, die Verknüpfung mit anderen Daten und ggf. die Annotation der Daten. Sowohl die Daten als auch die Erfassungs- und Verarbeitungsprozesse sollten dokumentiert und durch Metadaten beschrieben werden, um eine Nachvollziehbarkeit zu gewährleisten. Der Aufwand dieser Vorbereitung kann in KI-Projekten bis zu 80 Prozent des Gesamtaufwands betragen. Data Engineering stellt die Methoden und Infrastrukturen für diese Prozesse zur Verfügung und umfasst Datenmanagement, Datenintegration und Datenaufbereitung – beispielsweise durch Datenbanksysteme, Big Data-Systeme oder Data Cleaning-Werkzeuge.

    Welche Fähigkeiten benötigen Entwicklerinnen und Entwickler, um vertrauenswürdige KI-Anwendungen zu schaffen?

    Kai-Uwe Sattler: Neben Methodenkenntnissen aus dem Bereich des maschinellen Lernens bzw. der Künstlichen Intelligenz sind dies insbesondere Kenntnisse zur Datenmodellierung, -transformation und -integration, aber auch Kenntnisse der Statistik, um Eigenschaften der Daten und die Qualität der Ergebnisse bewerten zu können. Ferner sind Kenntnisse aus den Bereichen Ethik und Recht hilfreich, um verantwortungsvoll mit den Daten umgehen zu können. Und natürlich ist auch umfassendes Anwendungswissen unabdingbar. Dies zeigt schon, dass es sich nicht mehr allein um klassische Softwareentwicklung handelt. Vielmehr sind dies Anforderungen, die einen interdisziplinären Zugang erfordern: Anwendungsexpertinnen und -experten benötigen zunehmend sogenannte Data Literacy-Expertise und Data Science-Fachleute müssen auch die Anwendungsdomänen verstehen. Hier wird sich sicher ein großer Bedarf an Weiterbildungsangeboten entwickeln.


    Weiterführende Informationen:

    Das Whitepaper „Von Daten zu KI – Intelligentes Datenmanagement als Basis für Data Science und den Einsatz Lernender Systeme“ der Plattform Lernende Systeme steht hier zum kostenlosen Download bereit: https://www.plattform-lernende-systeme.de/files/Downloads/Publikationen/AG1_Whit...

    Einen Überlick über Studiengänge rund um KI und Data Science in Deutschland liefert die KI-Landkarte der Plattform Lernende Systeme: https://www.plattform-lernende-systeme.de/ki-landkarte.html?STU=1

    Über die Plattform Lernende Systeme

    Die Plattform Lernende Systeme wurde 2017 vom Bundesministerium für Bildung und Forschung (BMBF) auf Anregung des Fachforums Autonome Systeme des Hightech-Forums und acatech gegründet. Sie vereint Expertinnen und Experten aus Wissenschaft, Wirtschaft, Politik und Zivilgesellschaft aus dem Bereich Künstliche Intelligenz. In Arbeitsgruppen entwickeln sie Handlungsoptionen und Empfehlungen für den verantwortlichen Einsatz von Lernenden Systemen. Ziel der Plattform ist es, als unabhängiger Makler den gesellschaftlichen Dialog zu fördern, Kooperationen in Forschung und Entwicklung anzuregen und Deutschland als führenden Technologieanbieter für Lernende Systeme zu positionieren. Die Leitung der Plattform liegt bei Bundesministerin Anja Karliczek (BMBF) und Karl-Heinz Streibich (Präsident acatech).


    Original publication:

    Daniel Keim, Kai-Uwe Sattler: Von Daten zu KI – Intelligentes Datenmanagement als Basis für Data Science und den Einsatz Lernender Systeme. Whitepaper aus der Plattform Lernende Systeme, München 2020.


    More information:

    https://www.plattform-lernende-systeme.de/files/Downloads/Publikationen/AG1_Whit... Whitepaper „Von Daten zu KI – Intelligentes Datenmanagement als Basis für Data Science und den Einsatz Lernender Systeme“
    https://www.plattform-lernende-systeme.de/ki-landkarte.html?STU=1
    http://Studiengänge rund um KI und Data Science in Deutschland auf der KI-Landkarte der Plattform Lernende Systeme


    Images

    Kai-Uwe Sattler, Professor für Datenbanken und Informationssysteme an der Technischen Universität Ilmenau und Mitglied der Plattform Lernende Systeme
    Kai-Uwe Sattler, Professor für Datenbanken und Informationssysteme an der Technischen Universität Il ...
    Michael Reichel
    Michael Reichel / arifoto.de


    Criteria of this press release:
    Journalists
    Economics / business administration, Information technology, Mechanical engineering, Social studies
    transregional, national
    Research results, Transfer of Science or Research
    German


     

    Kai-Uwe Sattler, Professor für Datenbanken und Informationssysteme an der Technischen Universität Ilmenau und Mitglied der Plattform Lernende Systeme


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).