idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/23/2020 16:09

Milky Way Family Tree

Marietta Fuhrmann-Koch Kommunikation und Marketing
Universität Heidelberg

    Galaxies like the Milky Way formed by the merging of smaller progenitor galaxies. An international team of astrophysicists led by Dr Diederik Kruijssen from the Centre for Astronomy at Heidelberg University has succeeded in reconstructing the merger history of our home galaxy, creating a complete family tree. To achieve this, the researchers analysed the properties of globular clusters orbiting the Milky Way with artificial intelligence. Their investigations revealed a previously unknown galaxy collision that must have permanently altered the appearance of the Milky Way.

    Milky Way Family Tree
    Astrophysicists reconstruct the galaxy merger history of our home galaxy

    Galaxies like the Milky Way formed by the merging of smaller progenitor galaxies. An international team of astrophysicists led by Dr Diederik Kruijssen from the Centre for Astronomy at Heidelberg University has succeeded in reconstructing the merger history of our home galaxy, creating a complete family tree. To achieve this, the researchers analysed the properties of globular clusters orbiting the Milky Way with artificial intelligence. Their investigations revealed a previously unknown galaxy collision that must have permanently altered the appearance of the Milky Way.

    Globular clusters are dense groups of up to a million stars that are almost as old as the universe itself. The Milky Way hosts over 150 of such clusters. “Many of them came from smaller galaxies that later merged to form the Milky Way that we live in today,” explains Dr Kruijssen. To study the merger history, the Heidelberg researcher and his colleague Dr Joel Pfeffer of Liverpool John Moores University (United Kingdom) and their research groups developed a suite of advanced computer simulations, called E-MOSAICS. These simulations include a complete model for the formation, evolution, and destruction of globular clusters.

    The German-British team used these simulations to relate the ages, chemical compositions, and orbital motions of the globular clusters to the properties of the progenitor galaxies in which they formed, more than ten billion years ago. By applying these insights to groups of globular clusters in the Milky Way, they not only determined how massive these progenitor galaxies were, but also when they merged with our home galaxy.

    “The main challenge was that the merger process is extremely messy, because the orbits of the globular clusters are completely reshuffled,” explains Dr Kruijssen. “To overcome this complexity, we developed an artificial neural network and trained it on the E-MOSAICS simulations. We were astonished at how precisely the artificial intelligence allowed us to reconstruct the merger histories of the simulated galaxies, using only their globular clusters.” The researchers then applied the neural network to groups of globular clusters in the Milky Way and precisely determined the stellar masses and merger times of the progenitor galaxies. They also discovered a previously unknown collision between the Milky Way and an unknown galaxy, which the researchers named “Kraken”.

    “The collision with Kraken must have been the most significant merger the Milky Way ever experienced,” Dr Kruijssen adds. Before, it was thought that a collision with the Gaia-Enceladus galaxy some nine billion years ago was the biggest collision event. However, the merger with Kraken took place eleven billion years ago, when the Milky Way was four times less massive than today. “As a result, the collision with Kraken must have truly transformed what the Milky Way looked like at the time,” explains the Heidelberg scientist.

    Taken together, these findings allowed the team of researchers to reconstruct the first complete family tree of our home galaxy. Over the course of its history, the Milky Way cannibalised about five galaxies with more than 100 million stars, and about ten more with at least ten million stars. The most massive progenitor galaxies collided with the Milky Way between six and eleven billion years ago. Dr Kruijssen expects that these predictions will aid the future search for the remains of the progenitor galaxies. “The debris of more than five progenitor galaxies has now been identified. With current and upcoming telescopes, it should be possible to find them all,” the Heidelberg researcher concludes.

    The research results were published in “Monthly Notices of the Royal Astronomical Society”.

    Contact:
    Communications and Marketing
    Press Office
    Phone +49 6221 54-2311
    presse@rektorat.uni-heidelberg.de


    Contact for scientific information:

    Dr Diederik Kruijssen
    Center for Astronomy of Heidelberg University (ZAH)
    Phone +49 6221 54-1877
    kruijssen@uni-heidelberg.de

    Dr Guido Thimm
    Center for Astronomy of Heidelberg University (ZAH)
    Phone +49 6221 54-1805
    thimm@ari.uni-heidelberg.de


    Original publication:

    J.M.D. Kruijssen, J.L. Pfeffer, M. Chevance, A. Bonaca, S. Trujillo-Gomez, N. Bastian, M. Reina-Campos, R.A. Crain, M.E. Hughes: Kraken reveals itself – the merger history of the Milky Way reconstructed with the E-MOSAICS simulations, 2020, MNRAS 498, 2472-2491, doi: 10.1093/mnras/staa2452; https://arxiv.org/abs/2003.01119


    More information:

    http://wwwstaff.ari.uni-heidelberg.de/kruijssen/News/News.html


    Images

    Family tree of the Milky Way. The main progenitor of the Milky Way is denoted by the trunk of the tree, coloured by stellar mass. Black lines indicate the five identified galaxies.
    Family tree of the Milky Way. The main progenitor of the Milky Way is denoted by the trunk of the tr ...

    D. Kruijssen


    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Family tree of the Milky Way. The main progenitor of the Milky Way is denoted by the trunk of the tree, coloured by stellar mass. Black lines indicate the five identified galaxies.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).