idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
11/26/2020 09:23

Elektronen, die im Sechseck springen

Christina Glaser Präsidialabteilung, Bereich Kommunikation & Marketing
Universität Regensburg

    Wissenschaftler aus Regensburg, Karlsruhe und Tainan haben herausgefunden, dass Elektronen in atomar dünnen Kohlenstoffschichten im Magnetfeld nicht mehr wie gewöhnlich auf Kreisbahnen, sondern entlang hexagonaler Bahnen laufen.

    Bewegen sich freie Elektronen im Magnetfeld, so werden diese auf Kreisbahnen, sogenannte Zyklotronbahnen, abgelenkt. Dieser seit Ende des 19. Jahrhunderts bekannte grundlegende Mechanismus, der auf der Lorentzkraft beruht, fand beispielsweise früher in Bildröhren von Fernsehern breite Anwendung, wird in der Massenspektrometrie ausgenutzt und zwingt heute hochenergetische Elektronen in Teilchenbeschleunigern auf Kreisbahnen. Das gleiche gilt für Elektronen in Metallen und Halbleitern, die sich trotz der Atome des Kristallgitters nicht von der Kreisbewegung abbringen lassen, was beispielsweise in Hall-Sonden zur Magnetfeldbestimmung genutzt wird.

    Dass das scheinbar nicht immer der Fall sein muss, zeigt sich nun, wenn man Elektronen in extrem dünnen leitenden Schichten wie „Graphen“ untersucht, einer monoatomaren Lage aus Kohlenstoffatomen. Legt man zwei derartige Schichten übereinander, entstehen auf Grund des Moiré-Effektes räumlich periodische Muster, die für die Elektronen ein künstliches Gitter auf der Skala von Nanometern (millionste Teile eines Millimeters) darstellen und die Bewegung der mobilen Ladungsträger grundlegend verändern können: Wie quantenphysikalische Simulationen von Ming-Hao Liu aus Tainan (Taiwan) in Zusammenarbeit mit Klaus Richter überraschend ergaben, folgten die Elektronen in diesen ultradünnen Leitern nicht Kreisbahnen, sondern stattdessen näherungsweise Trajektorien in Form von Sechsecken: gewissermaßen also die hexagonale Erweiterung der Quadratur des Kreises. Diese neue Bewegungsform konnte zweifelsfrei in korrespondierenden interferometrischen Leitfähigkeitsmessungen der Gruppe um Romain Danneau aus Karlsruhe nachgewiesen werden.Diese Ergebnisse der trinationalen Kooperation wurden nun gemeinsam im Journal Physical Review Letters veröffentlicht und dort mit dem Prädikat Editors‘ Suggestion als Highlight hervorgehoben.

    Das bemerkenswerte und qualitativ neuartige Verhalten der Elektronen kann als ein kollektiver emergenter Quanteneffekt gedeutet werden, der durch das Wechselspiel der Ladungsträger mit dem Moiré-Gitter in derartigen zweidimensionalen Leitern zu Tage tritt. Er lässt sich mit Hilfe der Quantenmechanik aus der ungewöhnlichen Struktur ihrer Energiebänder herleiten. Derartige Phänomene werden im Regensburger Sonderforschungsbereich 1277 „Emergent Relativistic Effects in Condensed Matter“ unter Leitung von Klaus Richter erforscht.

    Die Bewegung der Elektronen entlang hexagonaler Trajektorien lässt sich auch so deuten, dass die Elektronen in der quasi-zweidimensionalen Schichtebene nicht wie sonst in beliebige Richtungen laufen können, sondern – wie durch quantenphysikalische Geisterhand gesteuert – de facto nur in sechs vorgegebene Raumrichtungen, selbst im Magnetfeld. Die Resultate eröffnen daher die Perspektive, durch Maßschneidern von Quanten-Materialien die Laufrichtung ihrer Elektronen robust und ganz gezielt vorzugeben, ein weiterer Schritt hin zu einer Entwicklung elektronenoptischer Bauelemente.


    Contact for scientific information:

    Prof. Dr. Klaus Richter
    Institut für Theoretische Physik
    Universität Regensburg
    Telefon: +49 941 943-2029
    E-Mail: klaus.richter@ur.de

    Dr. Romain Danneau
    Karlsruhe Institute of Technology (KIT)
    Institute of Nanotechnology
    Telefon: +49 721 608 28896
    E-Mail: romain.danneau@kit.edu


    Original publication:

    R. Kraft, M.-H. Liu, P. B. Selvasundaram, S.-C. Chen, R. Krupke, K. Richter, R. Danneau, “Anomalous Cyclotron Motion in Graphene Superlattice Cavities”, Physical Review Letters (2020).
    DOI: 10.1103/PhysRevLett.125.217701
    https://doi.org/10.1103/PhysRevLett.125.217701


    More information:

    http://www.physik.uni-regensburg.de/forschung/richter/richter/pages/home/home.ht...
    https://www.sfb1277-regensburg.de/


    Images

    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).