idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
12/17/2020 16:00

Physics breakthrough of the year

Ute Schönfelder Abteilung Hochschulkommunikation/Bereich Presse und Information
Friedrich-Schiller-Universität Jena

    For the development of a light-emitting silicon alloy, researchers from TU Eindhoven, Netherlands and the University of Jena, Germany together with partners from the University of Linz and TU Munich, are today (17 December) being awarded the “Breakthrough of the Year” prize by Physics World magazine. In its paper, published in April 2020, the team, which includes Jens René Suckert and Prof. Silvana Botti of the University of Jena, shows for the first time that silicon alloys are suitable for emitting photons on a significant scale, thus paving the way for silicon lasers that could revolutionise optical data processing.

    “Our work enables for the first time the production of silicon-based photonic computer chips that can work significantly faster with a strongly reduced energy consumption than previous electronic chips,” says Prof. Silvana Botti, explaining the importance of the development. Such microchips, which communicate with light particles (photons) instead of electrons, need an integrated laser that produces the photons directly on the chip. Until now, however, the semiconductor material silicon has been considered an extremely weak emitter of light. The reason for this is the symmetry of its electronic energy states. In order to emit photons, that is to say light, electrons in the semiconductor have to “jump” from an excited state – the conduction band – into a lower-energy state – the valence band. “However, in the silicon crystal, these two bands are offset from each other in such a way that the electron transfer is difficult,” explains Jens René Suckert, who is one of the lead authors of the award-winning paper. Therefore, this indirect band gap, as it is called, has so far prevented efficient photon emmission from silicon.

    In the alloy, silicon changes its crystal structure

    To get around this problem, the team was inspired by a 50-year-old theory and modified the crystal structure of silicon in a way that makes the band gap direct. For the first time, the researchers have succeeded in making alloys of silicon and germanium grow into a hexagonal crystal structure instead of its usual cubic lattice, which enhances the probability of obtaining transitions from the conduction band to the valence band. In their paper published in the scientific journal Nature, the researchers were able to show that in this crystal structure, silicon emits light efficiently.

    For the research, which was carried out as part of the EU project SiLAS, the Jena physicists provided the calculations of the electronic properties of the silicon-germanium nanowires being studied.

    “Sound calculations are crucial in proving that the light emission actually comes from the direct band transition of the alloy and to exclude any other sources,” says Silvana Botti. The Jena team’s calculations were so precise that they also allowed predictions about how efficient the light emission is and in which colour the light is emitted, depending on the germanium content of the alloy.

    Theory enables precise predictions for experiments

    “The award of the most important breakthrough of the year in physics research is a great confirmation of how important innovations can arise from the combination of theoretical and experimental research,” says a delighted Silvana Botti. As the current paper shows, experimental physics benefits from the calculations provided by theoretical physics. “Together, theory and experiment can lead to real breakthroughs,” adds Botti. The professor of theoretical solid-state physics also hopes that the award will win over students and perhaps motivate one or two to apply for a Master’s or doctoral programme in physics research at the University of Jena. As the current award clearly shows, the university is very well positioned internationally.


    Contact for scientific information:

    Prof. Dr Silvana Botti
    Institute of Solid State Theory and Optics of Friedrich Schiller University Jena
    Max-Wien-Platz 1, 07743 Jena, Germany
    Tel.: +49 (0)3641 / 947150
    E-mail: silvana.botti[at]uni-jena.de


    Original publication:

    The prize-winning publication:
    Direct Bandgap Emission from Hexagonal Ge and SiGe Alloys, E. M. T. Fadaly, A. Dijkstra, J. R. Suckert, D. Ziss, M. A. J. v. Tilburg, C. Mao, Y. Ren, V. T. v. Lange, S. Kölling, M. A. Verheijen, D. Busse, C. Rödl, J. Furthmüller, F. Bechstedt, J. Stangl, J. J. Finley, S. Botti, J. E. M. Haverkort, E. P. A. M. Bakkers. DOI: 10.1038/s41586-020-2150-y, https://www.nature.com/articles/s41586-020-2150-y


    Images

    Prof. Dr Silvana Botti and Jens Renè Suckert from the University of Jena have been awarded for the "Breakthrough of the Year" 2020.
    Prof. Dr Silvana Botti and Jens Renè Suckert from the University of Jena have been awarded for the " ...
    Juergen Scheere
    University of Jena


    Criteria of this press release:
    Journalists, Scientists and scholars
    Physics / astronomy
    transregional, national
    Contests / awards, Research results
    English


     

    Prof. Dr Silvana Botti and Jens Renè Suckert from the University of Jena have been awarded for the "Breakthrough of the Year" 2020.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).