idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/06/2021 08:06

Ein Ladungsdichte-Wellen-korreliertes Topologisches Halbmetall

Dipl.-Übers. Ingrid Rothe Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Chemische Physik fester Stoffe

    Topologische Materialien zeichnen sich durch einzigartige elektronische und physikalische Eigenschaften aus, die von der zugrundeliegenden Topologie ihrer elektronischen Systeme bestimmt werden. Wissenschaftler der Max-Planck-Institute für Mikrostrukturphysik (Halle) und für Chemische Physik fester Stoffe (Dresden) haben jetzt entdeckt, dass (TaSe4)2I das erste Material ist, bei dem eine Ladungsdichtewelle einen Phasenübergang zwischen dem Zustand des Halbmetalls zum Isolator induziert.

    Ein internationales Team von Wissenschaftlern des Max-Planck-Instituts für Mikrostrukturphysik in Halle (Saale), des Max-Planck-Instituts für Chemische Physik fester Stoffe in Dresden, der Universität Oxford und der Princeton University hat das erste Beispiel eines korrelationsgetriebenen Phasenübergangs vom topologischen Halbmetall zum Isolator in Einkristallen des Materials (TaSe4)2I entdeckt. In den letzten Jahren hat das Interesse an topologischen Materialien zugenommen, die einzigartige elektronische und physikalische Eigenschaften aufweisen, die von der zugrundeliegenden Topologie ihrer elektronischen Systeme abgeleitet sind. (TaSe4)2I ist ein ungewöhnliches Material, von dem bekannt ist, dass es knapp unterhalb der Raumtemperatur eine strukturelle Verzerrung erfährt, die durch eine Ladungsdichtewelle entsteht. Aufgrund von Elektronenkorrelationen wird das Elektronengas im System instabil gegenüber einer langreichweitigen periodischen Variation der Elektronenladungsdichte, die eng mit einer periodischen Modulation der Atome in der Kristallstruktur gekoppelt ist. Gleichzeitig wurde gezeigt, dass es sich bei diesem Material um ein topologisches Metall eines bestimmten Typs handelt, nämlich um ein Weyl-Semi-Metall. Diese Art eines topologischen Metalls ist durch eine elektronische Struktur gekennzeichnet, die Weyl-Punkte aufweist, an denen sich linear verlaufende elektronische Bänder kreuzen, ohne eine Energiebandlücke zu bilden. Diese Weyl-Punkte treten paarweise auf, wobei jeder von ihnen eine entgegengesetzte Chiralität besitzt. Die Autoren zeigen, dass (TaSe4)2I 24 Paare solcher Punkte mit einer entsprechenden sehr großen so genannten chiralen Ladung von +16 besitzt.

    In dieser Arbeit, die im Journal Nature Physics veröffentlicht wurde, zeigen die Autoren unter Verwendung einer Reihe anspruchsvoller experimenteller Methoden zur Analyse der elektronischen und kristallinen Struktur, dass die topologischen Eigenschaften dieser Verbindung eng mit der Ladungsdichtewelle verbunden sind, deren Wellenvektor sich aus den Abstandsvektoren zwischen Weyl-Punkten mit entgegengesetzter chiraler Ladung ableitet. Holger Meyerheim erinnert sich, dass "es sehr herausfordernd, aber auch sehr spannend war, die Ladungsdichtewelle in diesem Material zu identifizieren. Wir mussten sehr brillante Röntgenquellen verwenden, zum Beispiel Synchrotronstrahlung bei der Europäischen Synchrotronstrahlungsquelle, um die sehr schwachen Beugungssignaturen der Ladungsdichtewelle zu finden". Bei Abkühlung der Probe verursachen starke Elektronenkorrelationen den Übergang des Systems in den Zustand der Ladungsdichtewelle, was zu einem Übergang von einem topologischen Weyl-Halbmetall zu einem Isolator führt. Claudia Felser sagt: "Wer hätte geglaubt, dass wir eine so ausgefeilte korrelierte Elektronenphysik in einem Material mit einer solchen quasi eindimensionalen-Struktur finden würden". Diese Arbeit zeigt eine enge Verbindung zwischen Topologie und Korrelationen und bietet einen Weg zur Beobachtung von Axion-Elektrodynamik in kondensierter Materie in einem Regime, das bisher unzugänglich war [1]. Das System (TaSe4)2I ist das erste Beispiel, aber Andrei Bernevig betont: "Unsere Berechnungen der elektronischen Strukturen vieler Materialien machen mich sicher, dass es noch viel mehr solcher Systeme geben muss, in denen Korrelationen und Topologie ineinandergreifen", wobei Yulin Chen ergänzt ", die wir dann gerne experimentell verifizieren." "Diese Materialien eröffnen ein weites Forschungsgebiet für potenzielle Anwendungen in zukünftigen elektronischen Geräten, das "Topaxtronics!" genannt werden könnte", prognostiziert Stuart Parkin.

    [1] J. Gooth et al., Axionic charge-density wave in the Weyl semimetal (TaSe4)2I, Nature 575, 315 November 2019.


    Contact for scientific information:

    Claudia.Felser@cpfs.mpg.de


    Original publication:

    Wujun Shi, Benjamin J. Wieder, Holger L. Meyerheim, Yan Sun, Yang Zhang Yiwei Li, Lei Shen, Yanpeng Qi, Lexian Yang, Jagannath Jena, Peter Werner, Klaus Koepernik, Stuart Parkin, Yulin Chen, Claudia Felser, B. Andrei Bernevig and Zhijun Wang. A charge-density-wave topological semimetal. Nature Physics (2021). https://doi.org/10.1038/s41567-020-01104-z


    More information:

    https://www.cpfs.mpg.de/3274167/20210104


    Images

    Röntgenbeugungsintensitäten in der Nähe des (620, 000) Hauptreflexes der Ladungsdichtewellenphase des topologischen Weyl-Halbmetalls (TaSe4)2I. Kleine (rot beschriftete) Indizes kennzeichnen Satellitenreflexionen.
    Röntgenbeugungsintensitäten in der Nähe des (620, 000) Hauptreflexes der Ladungsdichtewellenphase de ...

    © MPI für Mikrostrukturphysik


    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Chemistry, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    German


     

    Röntgenbeugungsintensitäten in der Nähe des (620, 000) Hauptreflexes der Ladungsdichtewellenphase des topologischen Weyl-Halbmetalls (TaSe4)2I. Kleine (rot beschriftete) Indizes kennzeichnen Satellitenreflexionen.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).