idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/20/2021 15:44

Oldest Carbonates in the Solar System

Marietta Fuhrmann-Koch Kommunikation und Marketing
Universität Heidelberg

    A meteorite that fell in northern Germany in 2019 contains carbonates which are among the oldest in the solar system; it also evidences the earliest presence of liquid water on a minor planet. The high-resolution Ion Probe – a research instrument at the Institute of Earth Sciences at Heidelberg University – provided the measurements. The investigation by the Cosmochemistry Research Group led by Prof. Dr Mario Trieloff was part of a consortium study coordinated by the University of Münster with participating scientists from Europe, Australia and the USA.

    Oldest Carbonates in the Solar System
    Heidelberg Ion Probe used to date Flensburg meteorite

    A meteorite that fell in northern Germany in 2019 contains carbonates which are among the oldest in the solar system; it also evidences the earliest presence of liquid water on a minor planet. The high-resolution Ion Probe – a research instrument at the Institute of Earth Sciences at Heidelberg University – provided the measurements. The investigation by the Cosmochemistry Research Group led by Prof. Dr Mario Trieloff was part of a consortium study coordinated by the University of Münster with participating scientists from Europe, Australia and the USA.

    Carbonates are ubiquitous rocks on Earth. They can be found in the mountain ranges of the Dolomites, the chalk cliffs on the island of Rügen, and in the coral reefs of the oceans. They remove large amounts of the greenhouse gas CO2 from the atmosphere, making them relevant for the climate. Unlike the Earth of today, there were no carbonate rocks during the formation of primordial earth, when our planet was blazing hot.

    The meteorite that fell to Earth in September 2019, dubbed the Flensburg meteorite for where it was found, is classified as a carbonaceous chondrite, a very unusual and rare form of meteorite. According to Prof. Dr Addi Bischoff and Dr Markus Patzek from the University of Münster, the find is quite unique: “In the early Solar System, the rock was extensively exposed to a watery fluid and thus formed water-bearing silicates and carbonates.” The researchers from the Institute for Planetology view the meteorite as a possible building block that may have delivered water to the planet Earth early on.

    The Flensburg meteorite was dated at Heidelberg University using the ion probe. “Such measurements are extraordinarily difficult and challenging, because the carbonate grains in the rock are extremely small. Further, the isotopic measurements must be very precise, taken within a very tight range of just a few micrometres in diameter – thinner than a human hair,” explains Thomas Ludwig of the Institute of Earth Sciences. The dating method is based on the rates of decay of a naturally occurring isotope – the decay of the short-lived radionuclide 53Mn, which was still active in the early Solar System.

    “Using this method, the most precise age determinations thus far indicated that the parent asteroid of the Flensburg meteorite and the carbonates formed only three million years after the formation of the first solid bodies in the Solar System,” explains Prof. Trieloff. The carbonates are therefore more than a million years older than comparable carbonates in other types of carbonaceous chondrites. Besides the age determinations based on the radionuclide 53Mn, the tiny carbonate grains were also examined for their carbon and oxygen isotope composition with the aid of the Heidelberg Ion Probe. The carbonates apparently precipitated out of a relatively hot fluid shortly after the formation and heating of the parent asteroid. “They therefore evidence the earliest known presence of liquid water on a planetary body in the early Solar System,” states the cosmochemist.

    In all, 41 researchers from 21 institutions in Germany, France, Switzerland, Hungary, Great Britain, the USA and Australia contributed to the study, which was published in the journal “Geochimica et Cosmochimica Acta”. Work at the University of Münster was carried out under the auspices of the Transregional Collaborative Research Centre “Late Accretion Onto Terrestrial Planets” (CRC TRR 170). The research at Heidelberg University was funded by the Klaus Tschira Foundation. Ruperto Carola acquired the ion probe with funding from the German Research Foundation.

    Contact:
    Communications and Marketing
    Press Office
    Phone +49 6221 54-2311
    presse@rektorat.uni-heidelberg.de


    Contact for scientific information:

    Prof. Dr Mario Trieloff
    Institute of Earth Sciences of Heidelberg University
    Phone +49 6221 54-6022
    mario.trieloff@geow.uni-heidelberg.de


    Original publication:

    A. Bischoff, M. Patzek, T. Ludwig, M. Trieloff et al.: The old, unique C1 chondrite Flensburg – insight into the first processes of aqueous alteration, brecciation, and the diversity of water-bearing parent bodies and lithologies. Geochimica et Cosmochimica Acta 293 (2021), 142-186; https://doi.org/10.1016/j.gca.2020.10.014


    More information:

    http://www.geow.uni-heidelberg.de/HIP/index_en.html


    Images

    Flensburg meteorite with black fusion crust: Parts of the fusion crust were lost during the flight through the atmosphere. The small fragment, weighing 24,5 grams, is about 4.5 billion years old.
    Flensburg meteorite with black fusion crust: Parts of the fusion crust were lost during the flight t ...
    A. Bischoff / M. Patzek,
    University of Münster


    Criteria of this press release:
    Journalists
    Geosciences, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Flensburg meteorite with black fusion crust: Parts of the fusion crust were lost during the flight through the atmosphere. The small fragment, weighing 24,5 grams, is about 4.5 billion years old.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).