idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/28/2021 17:00

Thumb dexterity helped spark the development of human culture

Antje Karbe Hochschulkommunikation
Eberhard Karls Universität Tübingen

    Some two million years ago, our ancestors developed the ability to grasp precisely, a critical element of efficient tool use – securing an evolutionary advantage

    Important! Embargoed to Thursday, 28 January, 5 pm (MEZ)

    The mobility of the human thumb gave mankind decisive advantages in evolution. The ability to grasp precisely allowed early humans to be better at tool production and use, and to expand their food spectrum, for example. An interdisciplinary research team led by Professor Katerina Harvati, head of Paleoanthropology at the Senckenberg Center for Human Evolution and Paleoenvironment (SHEP), University of Tübingen, has now shown that this development could have appeared some two million years ago. The researchers analyzed fossil thumb bones and used virtual modeling to calculate manual dexterity of different human species. This research was conducted in close collaboration with the Hertie Institute for Clinical Brain Research (HIH), the Natural History Museum in Basel and the Medical School of Athens. The results have been published in the latest edition of the journal Current Biology.

    Systematic stone tool production and use are regarded as one of humanity’s defining characteristics and a pillar of our bio-cultural evolution, closely connected with our increased manual dexterity and ability for precise grasping motions. However, even though heightened manual dexterity is critical for human behavior and subsistence, its role in the development of early human culture remains unclear, as does the timing of its appearance and the hominin species with which it was first associated.

    The team addressed this research gap through a new, integrative approach for analyzing fossil thumb bones from different human species - including from early modern humans, Neanderthals, Australopithecus and Homo naledi. The researchers developed an innovative biomechanical model to analyze the forces that the thumb muscles might have exerted in each species and calculated each thumb’s dexterity. For further comparisons, the team also looked at how today’s great apes use their thumbs.

    “Our approach focuses on the efficiency of thumb opposition, a hallmark of human manual behavior that is fundamental for human-like precision grasping and tool use,” says Dr. Alexandros Karakostis, first author of the study and an expert on hand biomechanics. “For the first time, we were able to evaluate the impact of muscle tissues, which are not preserved in the fossil record, and the shape of the thumb bones, on the thumb-using efficiency, and therefore dexterity, of different fossil hominin species,” he says.

    This integrative methodology revealed remarkably high efficiency in hand bone fossils from the Swartkrans cave site in South Africa, dating to approximately 2 million years ago. “This point in time is associated with crucial bio-cultural developments, including the appearance of the larger-brained Homo erectus and increased levels of tool use and cultural complexity,” says Professor Harvati.

    The researchers found that the earliest proposed tool-making hominins of the genus Australopithecus, had consistently low thumb opposition efficiencies, similar to those observed in great apes today. This was also the case for Australopithecus sediba, a species whose human-like thumb proportions had been thought to reflect human-like grasping capacities. In contrast, more recent hominins, including Neanderthals, the small-brained Homo naledi and early Homo sapiens, all exhibited similarly high levels of thumb-using efficiency. “The fact that thumb opposition efficiency was consistently substantial in the genus Homo highlights the major importance of this evolutionary advantage for human bio-cultural evolution”, Harvati concludes.

    Video: https://www.dropbox.com/sh/zfxpm8zb6yi5yrq/AACqbt0HKdTxCqoUskSpEzzua?dl=0
    The Video may be used for free in the context of the research project. Please note the credits: Katerina Harvati, Alexandros Karakostis, Daniel Häufle.

    You will find high-res images here: http://www.pressefotos.uni-tuebingen.de/20210125_Daumen_Harvati.zip
    Please not the credits: Berthold Steinhilber / Universität Tübingen


    Contact for scientific information:

    Professor Dr. Katerina Harvati
    University of Tübingen
    Senckenberg Center for Human Evolution and Palaeoenvironment
    Phone: +49-(0)7071-29-76516
    katerina.harvati@senckenberg.de

    Dr. Alexandros Karakostis
    University of Tübingen
    Senckenberg Center for Human Evolution and Palaeoenvironment
    Phone: +49-(0)7071-29-73950
    fotios-alexandros.karakostis@senckenberg.de


    Original publication:

    Fotios Alexandros Karakostis, Daniel Haeufle, Ioanna Anastopoulou, Konstantinos Moraitis, Gerhard Hotz, Vangelis Tourloukis, Katerina Harvati: “Biomechanics of the human thumb and the evolution of dexterity”. Current Biology, DOI: 10.1016/j.cub.2020.12.041


    Images

    Aspect of the virtual model developed by the researchers to assess thumb dexterity in the fossil record
    Aspect of the virtual model developed by the researchers to assess thumb dexterity in the fossil rec ...

    Image: Katerina Harvati, Alexandros Karakostis, Daniel Häufle

    Prof. Dr. Katerina Harvati and Dr. Alexandros Karakostis developed an innovative method to calculate the manual dexterity of different human species
    Prof. Dr. Katerina Harvati and Dr. Alexandros Karakostis developed an innovative method to calculate ...
    Image: Berthold Steinhilber
    University of Tübingen


    Criteria of this press release:
    Journalists
    History / archaeology
    transregional, national
    Research results
    English


     

    Aspect of the virtual model developed by the researchers to assess thumb dexterity in the fossil record


    For download

    x

    Prof. Dr. Katerina Harvati and Dr. Alexandros Karakostis developed an innovative method to calculate the manual dexterity of different human species


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).