idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
01/29/2021 11:36

Technologien für leistungsfähigere Quantenrechner

Monika Landgraf Strategische Entwicklung und Kommunikation - Gesamtkommunikation
Karlsruher Institut für Technologie

    Quantenrechner sollen bislang nicht lösbare Problemstellungen effizient lösen können. Dazu gehören beispielsweise die Berechnung der Eigenschaften komplexer Moleküle für die Pharmaindustrie oder auch die Lösung von Optimierungsaufgaben, sei es für Herstellungsprozesse in der Automobilindustrie oder für Berechnungen aus der Finanzwelt. Im Verbundprojekt „GeQCoS“ haben sich mit Beteiligung des Karlsruher Instituts für Technologie (KIT) Deutschlands führende Forscherinnen und Forscher auf dem Gebiet der supraleitenden Quantenschaltkreise die Entwicklung innovativer Konzepte für den Bau eines verbesserten Quantenprozessors zum Ziel gesetzt.

    Diese Presseinformation finden Sie mit Foto zum Download unter:
    https://www.kit.edu/kit/pi_2021_006_technologien-fur-leistungsfahigere-quantenre...

    Der im Verbundvorhaben „German Quantum Computer based on Superconducting Qubits“, kurz GeQCoS, zu entwickelnde Quantenprozessor-Prototyp soll aus einigen wenigen supraleitenden Qubits mit grundlegend verbesserten Bauelementen bestehen. Bei dieser Technologie werden die wesentlichen Bausteine eines Quantencomputers, die Quantenbits - kurz Qubits -, durch widerstandslos fließende Ströme in supraleitenden Schaltkreisen realisiert. Diese Ströme sind relativ robust gegenüber äußeren Störeinflüssen und können die Quanteneigenschaften über lange Zeiten beibehalten.

    Neuartige Materialien für höhere Qualität der Qubits

    Die geplanten Verbesserungen betreffen sowohl die Erhöhung der Konnektivität, also der Anzahl an Verbindungen zwischen den einzelnen Qubits, als auch die Verbesserung der Qualität der Qubits und damit der Möglichkeit, schnell und effizient die gewünschten Quantenzustände herstellen zu können. „Das ist in diesem Stadium eine große Herausforderung“, sagt Dr. Ioan Pop vom Institut für QuantenMaterialien und Technologien des KIT. „Durch den Einsatz von neuartigen Materialien zur Herstellung der Qubits erwarten wir eine bessere Reproduzierbarkeit, eine höhere Qualität der Qubits.“

    Wichtiger Schritt zur Entwicklung supraleitender Quantenschaltungen in Deutschland

    Um in diesem Bereich eine Verbesserung zu erreichen, arbeiten die Forschenden in Sachen alternative Komponenten, Änderung der Architektur, Kopplungsmechanismen und höhere Genauigkeit der Berechnungen eng zusammen. „Dies ist ein sehr wichtiger Schritt zur Entwicklung supraleitender Quantenschaltungen in Deutschland. Diese Technologie wird von IT-Führungskräften auf dem Gebiet des Quantencomputers bevorzugt und derzeit verfolgt“, betont Professor Alexey Ustinov, Leiter der Forschungsgruppe am Physikalischen Institut des KIT. „Das ist eine fordernde Forschungstätigkeit zur Lokalisierung und Diagnose von Fehlern. Dabei müssen wir die Fabrikationsmethoden verbessern, um Störstellen zu vermeiden, welche die Qualität der Qubits nachhaltig beeinflussen.“

    Schon heute seien Quantenrechner in der Lage, kleine spezifische Problemstellungen zu meistern und die grundlegende Funktionsweise zu zeigen, so die Experten. Langfristiges Ziel sei es, einen sogenannten universellen Quantencomputer zu entwickeln, der wichtige Rechenprobleme exponentiell schneller als ein klassischer Computer berechne. Eine geeignete Architektur zur Berechnung praxisrelevanter Probleme könne nur durch grundlegende Verbesserungen sowohl der Hardware als auch der Software realisiert werden.

    Entwicklung innovativen Erstnutzern zur Verfügung stellen

    Um dieses Ziel zu erreichen, werden im Verbundprojekt auch skalierbare Fabrikationsprozesse entwickelt und die Entwicklung von optimierten Chipgehäusen wird vorangetrieben. Der Quantenprozessor soll schließlich am Walther-Meißner-Institut der Bayerischen Akademie der Wissenschaften an einem Prototyp demonstriert werden. Die entwickelten Technologien sollen nicht nur zu neuen wissenschaftlichen Erkenntnissen führen, sondern durch eine enge Verknüpfung mit Unternehmen auch das Quantenökosystem in Deutschland und Europa stärken. Der entwickelte Quantenprozessor soll so früh wie möglich sowohl auf der Hardware- als auch auf der Softwareebene innovativen Erstnutzern zur Verfügung gestellt werden.

    Neben dem KIT sind die Friedrich-Alexander-Universität Erlangen-Nürnberg, das Forschungszentrum Jülich, das Walther-Meißner-Institut der Bayerischen Akademie der Wissenschaften, die Technische Universität München, Infineon und das Freiburger Fraunhofer-Institut für Angewandte Festkörperphysik am Projekt beteiligt. Das Bundesministerium für Bildung und Forschung fördert das Verbundprojekt „GeQCoS“ mit 14,5 Millionen Euro, über 3 Millionen Euro gehen davon an das KIT. (jwa)

    Bildunterschrift:

    Visualisierung eines Quantenprozessors: In seinem Kern steckt ein Chip, auf dem supraleitende Qubits wie auf einem Schachbrettmuster angeordnet sind. (Abb.: Christoph Hohmann)

    Kontakt für diese Presseinformation:

    Johannes Wagner, Pressereferent, Tel.: +49 721 608-41175, E-Mail: johannes.wagner@kit.edu

    Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 24 400 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten.


    Images

    Visualisierung eines Quantenprozessors: In seinem Kern steckt ein Chip, auf dem supraleitende Qubits wie auf einem Schachbrettmuster angeordnet sind. (Abb.: Christoph Hohmann)
    Visualisierung eines Quantenprozessors: In seinem Kern steckt ein Chip, auf dem supraleitende Qubits ...
    Christoph Hohmann


    Criteria of this press release:
    Journalists
    Electrical engineering, Information technology, Materials sciences, Physics / astronomy
    transregional, national
    Cooperation agreements, Research projects
    German


     

    Visualisierung eines Quantenprozessors: In seinem Kern steckt ein Chip, auf dem supraleitende Qubits wie auf einem Schachbrettmuster angeordnet sind. (Abb.: Christoph Hohmann)


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).