idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
02/17/2021 16:23

Cells talk at each other to specialize different functions

Johann Jarzombek Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für molekulare Physiologie

    During development, cells must specialize their function in a well defined timeline:
    formation of different tissues must be coordinated from a pile of cells. The research group led by Aneta Koseska (former Max Planck Institute of Molecular Physiology (MPI), CAESAR Bonn) has now developed a new theoretical concept that shows how cells specialize in right proportions in a coordinated manner through their communication with each other, and thus how new structures are formed and maintained.

    Stem cells are the all-rounders among the cells in the body. They can differentiate into different cell types, such as skin cells, nerve cells or bone cells. Thus, during early embryonic development, a disordered bunch of stem cells transforms into ordered body structures. The information required for differentiation is stored in the genome of the stem cells. However, a blueprint for the formation of body structures is missing. Nevertheless, the development of different tissues must be executed with great precision and at the right time. How this complex process is coordinated still remains elusive.

    Cells talk to each other
    So far it has been assumed that the coordination of these processes takes place at the level of individual cells acting independently of one another. They receive signals from their environment that trigger the production of genetic markers and the development of characteristic gene expression patterns, and thereby stem cells differentiate into a cell with a specific function. In this framework however it is hard to explain how the right proportions of different cell types are generated, and how the timing of the differentiation emerges.

    Aneta Koseska's group has now established a completely new theoretical concept to describe cellular development based on a population-level mechanism. With this changed view, the scientists can now describe how the correct timing of development into a organized structure can be guaranteed, and how development can proceed robustly and precisely despite disturbances. The scientists suggest that the growth of the cell community can drive the fate of individual cells and thereby offer a missing link between morphogenesis and pattern formation.

    What biology has in common with the weather
    Theoretical concepts have a rich history in biology
    These theoretical concepts are tested using mathematical models that capture the essential mechanisms and parameters of a biological process. Complex events in the cell can be thereby described and predictions can be made. These models can be used like artificial laboratories to validate hypotheses made from experimental data but also used in developing new hypothesis that can then be experimentally tested. "Such research seems very abstract, but theoretical ideas have a rich history in biology " explains Aneta Koseska. One of the most known examples is the evolutionary theory proposed by Darwin, that was later mathematically formulated by other scientist. A theory gives us a way to understand “How does it function, what is the mechanism?” A direct link between theory and experiments is however crucial, as both parts are fundamental to generate understanding of complex processes.

    Cell-cell communication as a general property
    Communication between cells also plays an important role in other important processes such as wound healing for example. This is because cells must also continuously react to their environment. “With our newly developed concept, we want to investigate this in detail in the future, both theoretically and experimentally," says Aneta Koseska.


    Original publication:

    Stanoev A, Schröter C, Koseska A (2021). Robustness and timing of cellular differentiation through population-based symmetry breaking. Development. doi: 10.1242/dev.197608.
    https://dev.biologists.org/content/148/3/dev197608.long


    Images

    Dynamical model reveals how cell-cell communication in a growing population can trigger differentiation and robust cell type proportions (top), but also recover the exact proportions (middle and bottom) if cell types are separated by perturbation.
    Dynamical model reveals how cell-cell communication in a growing population can trigger differentiat ...


    Criteria of this press release:
    Journalists, Scientists and scholars, Students, Teachers and pupils, all interested persons
    Biology
    transregional, national
    Research results, Scientific Publications
    English


     

    Dynamical model reveals how cell-cell communication in a growing population can trigger differentiation and robust cell type proportions (top), but also recover the exact proportions (middle and bottom) if cell types are separated by perturbation.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).