idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/04/2021 09:51

Do known drugs help against SARS-coronavirus-2?

Karin Tilch M.A. Stabsstelle Kommunikation
Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

    Pancreatitis drug Camostat inhibits new SARS-CoV-2 activators identified in the upper respiratory tract

    There are no therapeutics available that have been developed for COVID-19 treatment. Repurposing of already available medication for COVID-19 therapy is an attractive option to shorten the road to treatment development. The drug Camostat could be suitable. Camostat exerts antiviral activity by blocking the protease TMPRSS2, which is used by SARS-CoV-2 for entry into cells. However, it was previously unknown whether SARS-CoV-2 can use TMPRSS2-related proteases for cell entry and whether these proteases can be blocked by Camostat. Moreover, it was unclear whether metabolization of Camostat interferes with antiviral activity. An international team of researchers around Markus Hoffmann and Stefan Pöhlmann from the German Primate Center (DPZ) - Leibniz Institute for Primate Research has now shown that SARS-CoV-2 can use several TMPRSS2-related proteases for its activation. These proteases are expressed in the upper respiratory tract and are blocked by Camostat. In addition, the researchers found that Camostat and its major metabolite GBPA inhibit SARS-CoV-2 infection of primary human lung tissue. These findings support the further development of Camostat and related compounds for COVID-19 therapy (EBioMedicine).

    SARS-CoV-2 depends on activation by the cellular protease TMPRSS2 for infection of lung cells. The researchers of the Infection Biology Unit of DPZ previously documented that the drugs camostat and nafamostat, which are used in Japan to treat inflammation of the pancreas, block SARS-CoV-2 infection by inhibiting TMPRSS2. However, it was unknown whether Camostat metabolites also block SARS-CoV-2 and whether the virus may use TMPRSS2-related proteases for infection that may be Camostat-insensitive.

    An international team of researches around Markus Hoffmann and Stefan Pöhlmann from the Infection Biology Unit of the DPZ has now shown that SARS-CoV-2 can use several TMPRSS2-related proteases for infection, among them TMPRSS11D and TMPRSS13. These proteases may support viral spread in the upper respiratory tract and are blocked by Camostat. This finding indicates that switching to activators other than TMPRSS2 might not allow the virus to replicate in the presence of Camostat.

    The researchers could show that not only Camostat but also a major Camostat-metabolite, GBPA, block TMPRSS2 and SARS-CoV-2 infection. "In the human body Camostat is rapidly converted to GBPA. Therefore, it was crucial to demonstrate that not only Camostat but also GBPA exert antiviral activity", says Stefan Pöhlmann, the head of the Infection Biology Unit of DPZ. Markus Hoffmann, the first author of the study adds: "Our results suggest that Camostat/GBPA may unfold antiviral activity in patients. However, for effective treatment of COVID-19, a higher Camostat dose might be required as compared to pancreatitis treatment."

    Inhibition of SARS-CoV-2 by Camostat was initially shown using the lung cell line Calu-3. The participation of Armin Braun, Fraunhofer ITEM, Hannover, and Danny Jonigk, Institute of Pathology at the MHH, in the consortium allowed analysis of Camostat antiviral activity in primary human lung tissue ex vivo. Camostat and GBPA blocked SARS-CoV-2 infection of lung tissue and Nafamostat had an increased antiviral activity. Therefore, the team of the Infection Biology Unit and the laboratory of Armin Braun are investigating how Nafamostat can be directly delivered into the human lung for increased antiviral activity. This project receives financial support from the Bundesministerium für Bildung und Forschung (BMBF) (project RENACO, Repurposing of Nafamostatmesylat for treatment of COVID-19).

    "Our results on the antiviral activity of Camostat and GBPA are relevant beyond the treatment of COVID-19. TMPRSS2 also plays an important role in other respiratory infections. Thus, Camostat could also be successfully used to treat influenza," says Markus Hoffmann.


    Contact for scientific information:

    Prof. Dr. Stefan Pöhlmann
    Phone: +49 551 3851-150
    Email: spoehlmann@dpz.eu

    Dr. Markus Hoffmann
    Phone: +49 551 3851 338
    Email: mhoffmann@dpz.eu


    Original publication:

    Hoffmann, M et al. (2021). Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine, https://doi.org/10.1016/j.ebiom.2021.103255


    More information:

    http://medien.dpz.eu/pinaccess/showpin.do?pinCode=Y2D5nS4x9E8u (printable pictures)


    Images

    The anti-pancreatitis drugs Camostat and Nafamostat block SARS-CoV-2 replication in lung tissue.
    The anti-pancreatitis drugs Camostat and Nafamostat block SARS-CoV-2 replication in lung tissue.
    Markus Hoffmann
    Deutsches Primatenzentrum

    Prof. Dr. Stefan Pöhlmann, Head of the Infection Biology Unit at the German Primate Center (DPZ) - Leibniz Institute for Primate Research
    Prof. Dr. Stefan Pöhlmann, Head of the Infection Biology Unit at the German Primate Center (DPZ) - L ...
    Karin Tilch
    Deutsches Primatenzentrum


    Attachment
    attachment icon PDF der Pressemitteilung mit Bildunterschriften

    Criteria of this press release:
    Journalists
    Biology
    transregional, national
    Research results
    English


     

    The anti-pancreatitis drugs Camostat and Nafamostat block SARS-CoV-2 replication in lung tissue.


    For download

    x

    Prof. Dr. Stefan Pöhlmann, Head of the Infection Biology Unit at the German Primate Center (DPZ) - Leibniz Institute for Primate Research


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).