idw – Informationsdienst Wissenschaft

Nachrichten, Termine, Experten

Grafik: idw-Logo
Science Video Project
idw-Abo

idw-News App:

AppStore

Google Play Store



Instance:
Share on: 
03/19/2021 11:00

Electrons in a plaster

UR Präsidialabteilung, Bereich Kommunikation & Marketing
Universität Regensburg

    Physicists in Regensburg and Marburg have tailored the mutual interaction of electrons in an atomically thin solid by simply covering it with a crystal featuring hand-picked lattice dynamics.

    Press embargo: 19th March 2021 10:00 GMT/05:00 US eastern time

    In a cubic centimeter of a solid there are typically 10²³ electrons. In this massive many-body system, seemingly simple pairwise electron-electron interaction can cause extremely complex correlations and exotic behavior, such as superconductivity. This quantum phenomenon turns a solid into a perfect conductor, which carries dissipationless electric currents. Usually, such coveted behavior is a “God-given” trait of specific solids. Yet, the discovery of atomically thin layered materials, such as graphene – a monolayer of graphite – or transition metal dichalcogenides (TMDCs), has opened a new creative lab to tailor electron-electron interactions and shape phase transitions. For example, by stacking graphene layers under specific angles, superconducting behavior can be created. Yet, theory has predicted that also coupling of electrons with quantized vibrations of the crystal lattice – called phonons – may critically influence the way electrons interact with each other.

    Physicists from Regensburg led by Rupert Huber in collaboration with Ermin Malic's group at Philipps University in Marburg have now come up with a new idea to fine tune the interaction between electrons by coupling to polar crystal lattice vibrations of a neighboring layer. This scenario can be realized by simply covering TMDC monolayers with a capping layer of gypsum, a material commonly used in plaster casts. To measure the coupling strength between electrons and phonons, physicists first excited electrons in the semiconducting TMDC monolayer with an ultrashort laser pulse, leaving corresponding holes behind at their original sites. Electrons and holes carry opposite charges and are thus bound to each other by their Coulomb attraction - just like electrons are bound to the nucleus in the hydrogen atom - forming so-called excitons. By observing their atom-like energy structure with subsequent ultrashort light pulse in the infrared, one can calibrate the interaction between the two particles.

    The surprising finding was that once the TMDC layers were covered with a thin gypsum cap, the structure of the excitons was substantially modified. “The mere spatial proximity of the gypsum layer is sufficient to strongly couple the internal structure of the excitons to polar lattice vibrations of gypsum”, says Philipp Merkl, the first author of the study. Even though this coupling mechanism connects electrons and phonons in different atomically thin layers, they interact so strongly that they essentially merge into new mixed particles. Once the researchers found the hang, they started playing with this new quantum effect: By placing an essentially inert third atomically thin layer as a spacer between the TMDC and the gypsum, they managed to adjust the spatial distance between the electrons and the phonons with atomic precision. “This strategy allowed us to fine tune the coupling strength with even higher precision”, corresponding author Dr. Chaw-Keong Yong adds. And he is convinced: “These findings could open new pathways to tailor electronic correlations in two-dimensional materials. In the future, this could enable man-made phase transitions in artificially stacked heterostructures and novel physical quantum properties, which could find applications in prospective lossless electronics and quantum information devices.”


    Contact for scientific information:

    Prof. Dr. Rupert Huber
    Chair for Experimental and Applied Physics
    University of Regensburg
    Phone +49 941 943-2067
    E-Mail: rupert.huber@ur.de
    http://www.physik.uni-regensburg.de/forschung/huber/home.html


    Original publication:

    P. Merkl, C.-K. Yong, M. Liebich, I. Hofmeister, G. Berghäuser, E. Malic and R. Huber, “Proximity control of interlayer exciton-phonon hybridization in van der Waals heterostructures”, Nature Communications (2021), DOI: 10.1038/s41467-021-21780-6
    https://www.nature.com/articles/s41467-021-21780-6


    More information:

    https://www.nature.com/articles/s41467-021-21780-6


    Images

    Artistic representation of interlayer exciton-phonon coupling at a transition metal dichalcogenide gypsum interface.
    Artistic representation of interlayer exciton-phonon coupling at a transition metal dichalcogenide g ...

    Philipp Merkl


    Criteria of this press release:
    Journalists, Scientists and scholars, Students
    Biology, Chemistry, Electrical engineering, Physics / astronomy
    transregional, national
    Research results, Scientific Publications
    English


     

    Artistic representation of interlayer exciton-phonon coupling at a transition metal dichalcogenide gypsum interface.


    For download

    x

    Help

    Search / advanced search of the idw archives
    Combination of search terms

    You can combine search terms with and, or and/or not, e.g. Philo not logy.

    Brackets

    You can use brackets to separate combinations from each other, e.g. (Philo not logy) or (Psycho and logy).

    Phrases

    Coherent groups of words will be located as complete phrases if you put them into quotation marks, e.g. “Federal Republic of Germany”.

    Selection criteria

    You can also use the advanced search without entering search terms. It will then follow the criteria you have selected (e.g. country or subject area).

    If you have not selected any criteria in a given category, the entire category will be searched (e.g. all subject areas or all countries).